Emissions pricing of food commodities: climate change mitigation potential and global health impacts

Marco Springmann^a, Daniel Mason-D'Croz^b, Sherman Robinson^b, Keith Wiebe^b, Charles Godfray^a, Mike Rayner^a, Peter Scarborough^a

^aOxford Martin Programme on the Future of Food, University of Oxford ^bInternational Food Policy Research Institute, Washington DC

Rise in food-related GHG emissions could seriously impede efforts to limit global warming:

- Food system responsible for > 25% of all GHG emissions, most of which related to livestock (Vermeulen et al, 2012; Steinfeld et al, 2006; Tubiello et al, 2014).
- Food-related emissions projected to increase by up to 80% by mid-century due to population growth and dietary changes (Popp et al, 2010; Hedenus et al, 2014; Tilman and Clark, 2014; Baizeli et al, 2014; Springmann et al, 2014).
- In 2050, food-related GHG emissions could take up half of emissions budget allowed to keep global warming below 2°C, and exceed it by 2070 (Hedenus et al, 2014; Springmann et al, 2016).
- ⇒ Reducing food-related GHG emissions will be critical for climate change mitigation.

Difficulties of regulating emissions from food and agriculture:

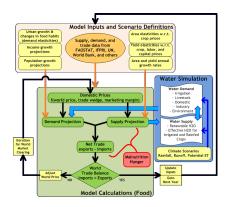
- Ag emissions are variable (non-point) and hard (and costly) to monitor at source (Lassey, 2007; Bouwman et al, 2002; Snyder et al, 2009).
- Most Ag emissions are intrinsic to the system (methane from ruminants, nitrous oxide from fertilizers) → difficult to address without affecting output and food availability (Smith et al, 2007, 2008).
- Potential impacts on food security (Golub et al, 2013; Havlik et al, 2014).
- \rightarrow Food and agriculture largely spared from climate policies.

This study:

• Global analysis of emissions and health impacts of levying GHG taxes on food commodities (at point of purchase).

Addresses difficulties:

- Demand-side policies (in theory) preferable when monitoring costs high, high substitutability, and limited mitigation options apart from output reduction (Schmutzler and Goulder, 1997; Wirsenius et al, 2010).
- Health impacts depend on both food availability and food composition, e.g., dietary changes away from emissions-intensive animal-based foods associated with better health (Tilman and Clark, 2014; Springmann et al, 2016).

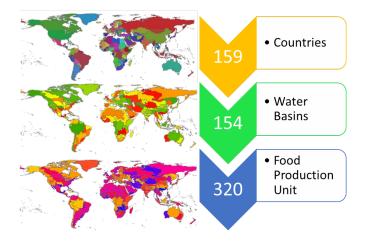

Research approach

Methods: coupled modelling framework

- Agricultural analysis:
 - Use of IMPACT model to project future food consumption
- Environmental analysis:
 - Commodity and region-specific GHG emissions factors from FAO and Tilman and Clark (2014)
- Economic analysis:
 - Social cost of carbon estimates from model comparison of integrated assessment models (for US Gov)
 - Consumer responses to price changes with international data on prices and elasticities (IMPACT),
- Health analysis:
 - Use of global comparative risk assessment framework developed at Oxford

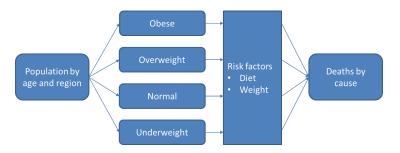
IMPACT description

International Model for Policy Analysis of Agricultural Commodities and Trade (**IMPACT**):



Partial equilibrium approach:

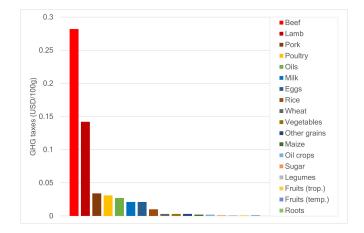
- World food prices are determined annually at levels that clear international commodity markets
- Food production depends on crop and input prices, productivity growth, area expansion, irrigation and water availability
- Food demand depends on commodity prices, income, and population growth


IMPACT description

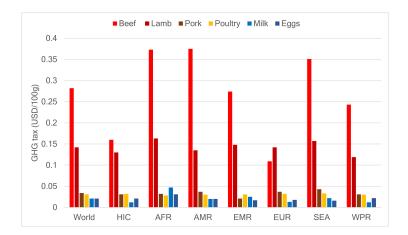
High spatial resolution:

Global health model

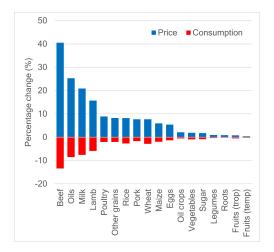
Comparative risk framework:


- 6 risk factors: fruits&veg and red meat (2/3 of dietary risks), weight classes (5 of following 10 risk factors)
- 5 causes of death: CHD, stroke, T2DM, and cancer (60% of NCD deaths), aggregate of other causes
- Changes in mortality by calculating population attributable fractions (PAFs) to risk exposures

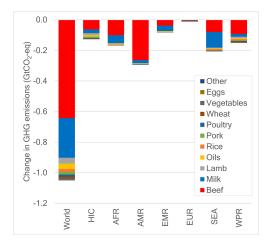
Scenario assumptions:

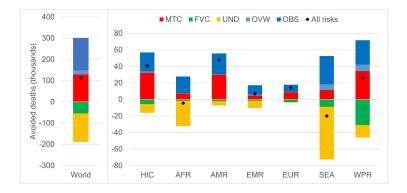

- GHG taxes on food commodities at point of purchase;
- Taxes are implemented independently in each country as coordinated implementation unlikely (focus on demand response, no international feedbacks);
- Emissions and health impacts for the year 2020 (when new global climate agreement is to be implemented);
- Health impacts for adults (aged 20 or older), but sensitivity analysis of health impacts on children.
- GHG price of 52 USD/tCO₂-eq associated with discounting future climate damages with a discount rate of 3%.

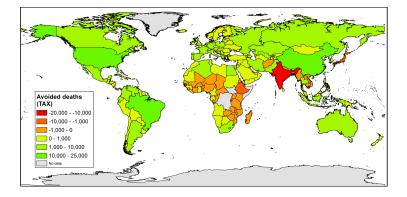
Model scenarios:


- TAX: GHG taxes on all food commodities
- *TAXadj*: Tax exemptions for health-critical food groups in dev countries (fruits&veg and staples)
- *TAXani*: GHG taxes only on animal products (meat, dairy, eggs)
- TAXrem: GHG taxes only on red meat (beef, lamb, pork)
- TAXbef: GHG taxes only on beef
- Income-compensated variants (*r*)
- Variants in which three quarters of tax revenues are used to subsidize fruits&veg (s)

• GHG taxes highest for animal-sourced foods.

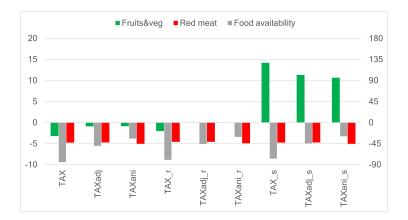

Regional differences due to different production systems (e.g. grass-fed beef in AMR vs intensive grain-fed beef in USA vs mixed beef and dairy systems in EUR).


• High price and consumption changes for ruminant-based foods and vegetable oils (det by GHG taxes and baseline prices).


- High meat impacts in AMR due to high emissions intensities;
- low meat impacts in HIC, EUR, and EMR due to low emissions intensities (HIC, EUR) and high prices (EUR, EMR).

• High emissions reductions ($\approx 1 \text{ GtCO}_2$); two thirds from less red meat, a quarter from less milk; three quarters from MICs.

- Health benefits due to \downarrow red meat, \downarrow overweight, \downarrow obesity;
- Health losses due to \downarrow fruit&veg, \uparrow underweight.
- Global benefits, but net losses in AFR and SEA.

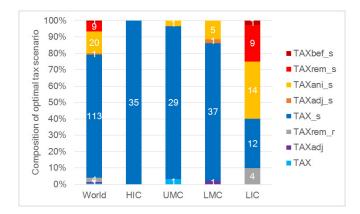


- Net losses in 35 countries;
- Greatest losses in India, Bangladesh, Ethopia;
- Greatest benefits in China, Brazil, USA, Mexico, Russia.

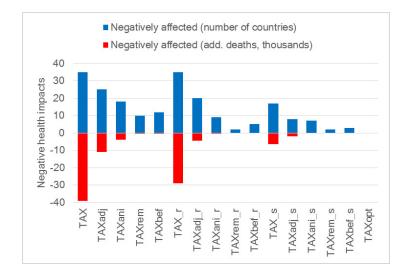
Model scenarios:

- TAX: GHG taxes on all food commodities
- *TAXadj*: Tax exemptions for health-critical food groups in dev countries (fruits&veg and staples)
- *TAXani*: GHG taxes only on animal products (meat, dairy, eggs)
- TAXrem: GHG taxes only on red meat (beef, lamb, pork)
- TAXbef: GHG taxes only on beef
- Income-compensated variants (r)
- Variants in which half of tax revenues are used to subsidize fruits&veg (s)
- \Rightarrow **15** different tax scenarios

Results: alternative tax scenarios

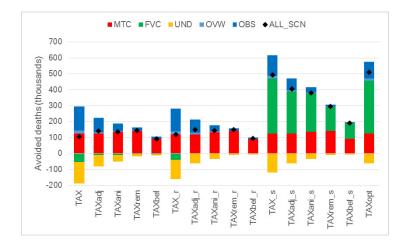


- TAX→TAXani: ↑ fruits&veg, ↑food availability;
- (TAX,TAXadj,TAXani)→(TAX_r,TAXadj_r,TAXani_r)
 →TAX_s,TAXadj_s,TAXani_s): ↑fruits&veg.

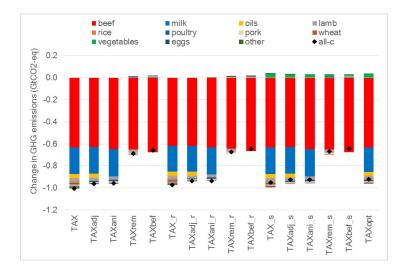

Results: alternative tax scenarios

Find health-maximising tax scenario for each region:

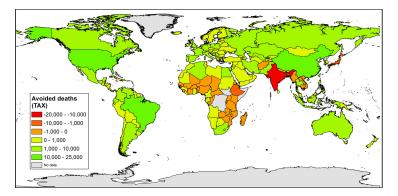
• Optimization across all 15 tax scenarios:



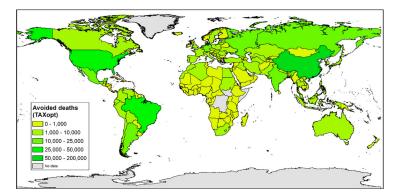
Results: optimal tax scenario


• No negative net health impacts in TAXopt scenario.

Results: optimal tax scenario


• Global health benefits increases fivefold in TAXopt.

Results: optimal tax scenario



• Mitigation potential similar in TAXopt as in TAX.

From naive tax scenario...

To health-sensitive taxing schemes:

Direction of results not affected by:

- Potential impacts on undernourishment and stunting amongst children:
 - 3% change in TAX, ${<}0.4\%$ change in TAXopt
- Greater number of years lost early in life (YLS), disability associated with ill-health (DALY):
 - negative impacts in up to 8 very low-income countries
- Different GHG prices (14, 52, 78, 156 USD/tCO₂-eq):
 - 150,000-1,300,000 avoided deaths; 0.3-1.9 $\rm GtCO_2\text{-}eq$ emissions reduced.

Discussion

We find:

- GHG taxes on food commodities could, if appropriately designed, be a health-promoting climate change policy in HICs and most LMICs;
- Increased food prices and reductions in food availability not necessarily negative:
 - \downarrow obesity > \uparrow underweight
 - $\bullet\,$ benefits from $\downarrow red\,\,meat >$ losses from other food groups.
- Special policy attention needed in LICs and other vulnerable countries (and populations) to avoid health losses:
 - excluding fruits&veg and other critical food groups from taxation;
 - compensating income losses;
 - using tax revenues for health promotion, e.g. subsidies for fruits&veg.

Results in context:

- GHG mitigation potential ($\approx 1 \text{ GtCO}_2$):
 - More than current GHG emissions of global aviation;
 - 10% of emissions gap for 2020;
 - supply-side measures, such as rice, livestock, and manure management (each below 250 MtCO₂-eq; Smith et al, 2014);
 - Similar to global mitigation target for agriculture in 2030 (Wollenberg et al, 2016).
- Health benefits (\approx 100,000-500,000 avoided deaths)
 - Comparable to health benefits of reduced air pollution from coal-fired power plants (West et al, 2013);
 - Small when compared to potential health benefits of global dietary change towards more plant-based diets (\approx 5-8 million avoided deaths in 2050; Springmann et al, 2016)
 - $\rightarrow\,$ Additional policy measures needed for more health benefits from dietary change.

Discussion

Caveats:

- Health analysis based on food groups:
 - strong epidemiological evidence
 - no account of changes in nutritional quality of diets (fatty acid composition, sodium content, micronutrients).
- Comparative static framework:
 - no account of time lags between introduction of GHG taxes and changes in food consumption and health outcomes.
- Comparative regional analysis:
 - coordinated implementation seems unlikely at present;
 - no account of feedbacks between countries;
 - no account of supply side.

Thank you for your attention.

Comments and suggestions:

• marco.springmann@dph.ox.ac.uk

Co-authors:

- University of Oxford: Peter Scarborough, Mike Rayner, Charles Godfray
- International Food Policy Research Institute: Daniel Mason-D'Croz, Sherman Robinson, Keith Wiebe

Jerry Nelson:

- Biological research on effects of higher CO₂ and temperature on micronutrient availability, especially vitamins;
- Restructure ag research priorities to increase availability of micro nutrients (e.g. fruits and veggies rather than staples). Keith Wiebe:
 - Need improved modeling of fruits, vegetables, and animal-source foods in terms of livelihoods, nutrition, and the environment;
 - Need improved modeling of the impacts of climate variability and extreme events.

Marco Springmann:

- Increase detail of economic analysis of dietary and food-system changes;
- Align resolution of health and agricultural analysis, and introduce more food groups into analysis.