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Current public advice from the Food and Nutrition Board (FNB) about essential fatty acids (EFA) has lim-
ited quantitative details about three processes: (1) similar dynamics for n-3 linolenic and n-6 linoleic
polyunsaturated fatty acids (PUFA) in maintaining 20- and 22-carbon n-3 and n-6 highly unsaturated
fatty acids (HUFA) in tissues; (2) different dynamics for tissue n-3 and n-6 HUFA during formation and
action of hormone-like eicosanoids; (3) simultaneous formation of non-esterified fatty acids (NEFA)
and low density lipoprotein (LDL) from very low density lipoprotein (VLDL) formed from excess food
energy and secreted by the liver.

This report reviews evidence that public health may benefit from advice to eat less n-6 nutrients, more
n-3 nutrients and fewer calories per meal. Explicit data for linoleic acid fit an Estimated Average Require-
ment (EAR) near 0.1 percent of daily food energy (en%) meeting needs of half the individuals in a group, a
Recommended Dietary Allowance (RDA) near 0.5 en% meeting needs of 97–98 percent of individuals, and
a Tolerable Upper Intake Level (UL) near 2 en% having no likely risk of adverse health effects. Quantitative
tools help design and monitor explicit interventions that could beneficially replace imprecise advice on
‘‘healthy foods’’ with explicit preventive nutrition.
� 2014 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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‘‘All truths are easy to understand once they are discovered; the

point is to discover them.’’

[– Galileo Galilei]
1. Public guidelines in the United States of America (USA)

The National Academy of Sciences was formed in 1863 to advise
the federal government on scientific and technical matters, and in
1916, it organized the National Research Council to serve as its
principal operating agency to provide services to the public and
the scientific community. In 1940, the Council formed a Food and
Nutrition Board (FNB) to study the safety and adequacy of the
USA food supply; establish principles and guidelines for good
nutrition; and provide authoritative judgment on the relationships
among food intake, nutrition, and health maintenance and disease
prevention (e.g., 1). At that time, estimates of essential nutrient
efficacy were routinely made from dose–response studies and
described in terms of an ‘‘optimal’’ amount needed per day. Several
n-3 and n-6 essential fatty acids (EFA) were recognized from stud-
ies with laboratory animals, and many questions rose regarding
possible mechanisms by which the nutrients maintained health.

The past 50 years brought recognition that dietary EFA accumu-
late as highly unsaturated fatty acids (HUFA) in tissues where they
form hormone-like eicosanoids that act on selective receptors
influencing physiological processes in nearly every tissue of the
body. Competing metabolism by n-3 EFA can moderate actions of
the n-6 EFA. The relative intakes of n-6 and n-3 nutrients create
tissue HUFA proportions that create a propensity or predilection
for more or less vigorous eicosanoid actions, respectively. Many
effective pharmaceutical agents decrease excessive actions by n-6
eicosanoids. The benefits obtained from reducing n-6 mediator
actions when using such agents give a new perspective on a possi-
ble tolerable upper intake level (UL) for n-6 nutrients.

The wide scope of harmful n-6 eicosanoid actions now known
to occur requires careful discrimination between associated and
causal mediators when advising the public about ‘‘optimal’’ intakes
of n-3 and n-6 nutrients. Rigorous logic can avoid evidence-based
misunderstandings. Despite repeated warnings that correlation is
not evidence of causation and that a lack of evidence for an effect
is not evidence for the lack of an effect [2], misleading advice can
occur. Inadequate logic or neglect of certain evidence can impair
the effectiveness of advice. A continuing unfolding of new scientific
insights creates a continuing need to revise health advice to the
public.

The following discussion examines quantitative evidence for
actions of n-3 and n-6 essential fatty acids in the context of health
maintenance and disease prevention. It notes examples in which
current public advice might be re-phrased, and it describes simple
arithmetic tools by which individuals may make informed choices
of foods and monitor metabolic outcomes. The review moves from
basic nutritional science through biomedical metabolic insights
toward practical applications of that information for primary pre-
vention of health disorders.
2. Essential fatty acids in human nutrition

In 1946, the FNB asked two pioneers in the study of essential
fatty acids (EFA), Arild Hansen and George Burr, to review the
current knowledge [3] about a possible human need for these
nutrients first described in 1929 as essential for rats [4]. The
researchers noted that very low amounts were needed, and ‘‘the
observation proving linoleic acid and arachidonic acid to be dietary
essentials was not made until young laboratory animals had been
maintained on diets extremely low in fat for relatively long periods
of time. The likelihood that a human infant would subsist for a
prolonged period on a diet practically devoid of fat, yet complete as
regards other known dietary essentials, is practically nil.’’

Physiological signs used for quantitative assay of essential fatty
acid actions in rats were (i) development of scaly skin and caudal
necrosis, (ii) retardation of growth, (iii) increased water consump-
tion and (iv) early death. These were prevented by feeding linoleic
(18:2n-6), linolenic (18:3n-3), arachidonic (20:4n-6) and docosa-
hexaenoic (22:6n-3) acids. Prophylactic doses of 20–25 mg of
linoleic acid promoted good growth and reproduction of rats, and
50–100 mg daily seemed superior for curative treatments. For
reasons not apparent now, the authors chose the highest content
studied (100 mg for 10 g diet, i.e., 1%) as a ‘‘minimum adequate daily
intake’’ of linoleic acid for a rat.

In 1946, with no clear evidence for a lack of essential fatty acids
in humans, Hansen and Burr suggested that a ‘‘required’’ level of
intake for humans might be 1 per cent of the diet based on the
assumption that humans and rats have similar metabolic
responses to these nutrients [3]. Their review concluded by noting
that the greatest difficulty in studying quantitative requirements
for humans was an inability to monitor accurately the status of
essential fatty acids in blood and tissues. This problem was
addressed first by spectrophotometric estimates of unsaturated
fatty acid content and later by detailed, informative gas chromato-
graphic analyses.
2.1. Evidence from infants

To look for clinical signs in humans, Hansen and his colleagues
began an extensive clinical study of several hundred infants [5].
The chief criteria for selection were the parent’s wish to cooperate
and a normal neonate status of the infant. The babies included chil-
dren of physicians and medical students plus children seen in Well
Baby Clinics. Infants ate one of several different milk mixtures with
different contents of linoleic acid. The group eating a milk mixture
with only 0.04 percent of food energy (en%) as linoleic acid had
unsatisfactory progress, and a fifth diet with 0.07 en% linoleate
was added while the 0.04 en% diet was eventually terminated.
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Signs for most of the infants fed 0.04 en% linoleate were ‘‘fre-
quent large stools and perianal irritation’’. Also, skin alterations were
discernible within weeks in the majority of these infants. In each
instance when the milk mixture was changed to one containing
more than 1 en% linoleic acid, the diarrhea stopped, the rash in
the diaper region disappeared, the raw exuding areas cleared and
the skin gradually returned to a normal soft velvety texture.

Rates of growth were similar and satisfactory for almost all of the
infants who received 1.3%, 2.8% and 7.3% of calories as linoleic acid;
whereas progress was unsatisfactory for many, but not all, of the
infants with linoleic acid intakes below 0.1 en%. Following introduc-
tion of cereals to their diet, all infants had a gradual decrease in
deficiency signs as well as increased circulating levels of dienoic acid
in the blood. Signs of deficiency disappeared promptly whenever
linoleic acid provided 1% or more of food energy.

The early decision to add a fifth diet with 0.07 en% linoleic acid
gave important data in the very narrow range sensitive to dietary
linoleate efficacy. In the first 3 months, unwanted dermal signs
appeared in 100% infants receiving 0.04 en% linoleate, but in only
40% infants receiving 0.07 en%. Eating less than 0.1 en% prevented
signs of essential fatty acid deficiency in half of the babies. This
result acquires greater significance in the discussion in Section 9.
Results gathered over four years with 428 infants confirmed that
linoleic acid is an essential nutrient for human infants [6], and
the lack thereof was described as EFA deficiency.
3. Converting dietary essential fatty acids (EFA) into tissue
highly unsaturated fatty acids (HUFA)

Holman [7] used an alkaline isomerization spectrophotometric
method to measure very sensitive metabolic responses of endoge-
nous polyunsaturated fatty acids in rats to dietary linoleate levels
between zero and 1 en%. By 1960, research had shown that metab-
olism of both dietary 18-carbon polyunsaturated fatty acids
(PUFA), linoleic and linolenic acid, led to formation and accumula-
tion of 20- and 22-carbon highly unsaturated fatty acids (HUFA) in
tissues of rats and humans. The amount of trienoic acid formed
from the monoenoic oleic acid fell as the tetraenoic arachidonic
acid formed from linoleic acid rose in response to diets, and the dif-
ferent observed proportions of accumulated trienoic and tetraenoic
HUFA were similar in plasma, erythrocytes and heart tissue.

Only two of seven diets tested with rats produced dermal scores
significantly above zero. Those diets had 0 and 0.14 en% linoleic
acid. In contrast, no significant dermal score indicating an EFA
deficiency occurred with diets that had 0.56, 1.12, 4.48, 5.1 and
20.2 en% linoleate. Holman noted that the tetraene value rose to
a maximum value when dietary linoleic acid rose from 0 to
1 en%. He suggested that a ‘‘break point’’ near 1 en% linoleate (cor-
responding to a triene/tetraene ratio of 0.4) marked a transition
between ‘‘inadequate’’ and ‘‘adequate’’ EFA status (even though no
deficiency signs occurred for rats eating 0.56 en%).

Spectrophotometric measurements of the di-, tri- and tetrae-
noic acid levels in the blood of the 428 infants studied by Hansen
et al. [6] showed similar metabolic biomarker responses to linoleic
acid by rats and humans [8]. Data for the two low linoleate intakes
of 0.04 and 0.07 en% differed greatly from the data for 1.3, 2.8 and
7.3 en% linoleate. Infants eating less than 0.1 en% had many mea-
sures of deficiency, whereas those eating more than 1 en% had very
few measures of deficiency.

With only five levels of intake to examine, a ‘‘biphasic’’ hyper-
bolic curve of EFA status could not be clearly defined, although
the metabolic response of the biomarkers closely resembled the
more detailed results observed with rats. The sensitive increase
of tissue tetraenes to small additions of dietary linoleate was not
seen with dietary intakes above 1 en%. The authors regarded
results from feeding linoleate at less than 0.1 per cent of calories
to not be a ‘‘practical problem’’ associated with a ‘‘practical nutri-
tional range’’ [8] even though the important midpoint for response
to dietary linoleate was below 0.1 en%. They proposed that about 1
per cent of food calories was a ‘‘minimal linoleate requirement’’ for
the human infant.
3.1. Gas chromatography gives explicit values

Gas chromatography was used next in a comprehensive study
of the effect of dose level of EFA upon the fatty acid composition
of rat tissues [9]. The researchers fed many groups with less than
1 en% of essential fatty acids because previous experiments had
shown the most dramatic dose–response changes in this region.
Diets included 0.01, 0.02, 0.05, 0.10, 0.18, 0.32 and 0.61 en% linoleic
acid and 0.01, 0.02, 0.04, 0.08, 0.18, 0.32 and 0.61 en% linolenic
acid. Low levels of both acids were similarly effective in promoting
growth of rats. The hyperbolic rise in the proportions of n-3 or n-6
HUFA (see graphical array in Fig. 4 in Ref. [10]) was very sensitive
to small dietary increments, fitting a mid-point response with
intakes near 0.1 en% and ‘‘plateauing’’ with dietary intakes above
1 en%.

A graph of lower accumulated 20:3n-9 with higher intakes of
EFA (see Fig. 4 in Ref. [10]) showed that both the n-6 linoleic and
n-3 linolenic acids had similar high efficacies in competing against
endogenous n-9 oleic acid during elongation and desaturation met-
abolic steps. The metabolic efficacy and EFA activity for both EFA fit
a mid-point near 0.1% dietary food energy. Further study of the
20:3 fraction showed that it contained primarily 20:3n-9 formed
from endogenous oleate (18:1n-9) with small amounts of 20:3n-
7 formed from palmitoleate (16:1n-7). More recent detailed results
[11] confirmed that metabolic dynamics for dietary n-3 and n-6
PUFA are very similar during conversion to the corresponding
HUFA. Approximately 78% of both EFA was catabolized or excreted,
16–18% of both was accumulated unchanged in tissues, and about
6% of 18:3n-3 and 2.6% of 18:2n-6 was accumulated as HUFA in
tissues [11]. The similar metabolic dynamics for the n-3 and n-6
nutrients make their relative dietary supply an important control-
ling factor for the relative n-3 and n-6 proportions that accumulate
in tissue HUFA (see Section 9). The results also illustrate how
pivotal the diet with 0.07en% linoleic [5,6] was for interpreting
EFA status and informing us about the quantitative need for small
amounts of EFA in humans.

A detailed gas chromatographic study of the competitive meta-
bolic interactions between linoleate and linolenate [12] used many
dietary levels in the narrow range near the onset of EFA deficiency
comparable with those used when linoleate and linolenate were fed
singly [9]. Although mild dermatitis occurred with some rats having
linoleate intakes near 0.08 en%, no severe signs of deficiency were
evident with rats eating more than 0.3 en% linoleate. Again, the evi-
dence confirmed that metabolic and physiological efficacy is similar
for rats and humans as suggested in the 1946 report to the FNB [3].
The proportions among different 20- and 22-carbon HUFA were
sensitive indicators of the relative supplies of n-3 and n-6 EFA. This
study [12] also described another trienoic acid, 20:3n-6, which was
derived from linoleate and accumulated in tissues. The presence of
several forms of trienoic acids in tissues made continued use of gen-
eral triene/tetraene ratios for estimating EFA status an imprecise
and over-simplified exercise and gas chromatographic assays of
HUFA are now a standard measure of EFA status.
4. A sharpened focus on EAR and RDA

Terminology currently used by the Food and Nutrition Board
(FNB) to convey aspects of nutrient requirements is in a set of
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Dietary Reference Intakes [1] that expand and replace previously
published ‘‘Recommended Dietary Allowances’’ and ‘‘Recommended
Nutrient Intakes’’. The new dimensions include an Estimated
Average Requirement (EAR), an intake that meets the estimated
nutrient needs of half the individuals in a group. A higher intake
that meets the nutrient need of almost all (97–98 percent) individ-
uals in a group is called a Recommended Dietary Allowance (RDA).
By 1963, the sensitive hyperbolic response of tissue biomarkers
and clinical signs to dietary essential fatty acids recognized after
the 1946 FNB request for clarification [3] fit an EAR slightly below
0.1 en% and a RDA near 0.5 en%. Two further clarifications of these
values are noted below.

Collins et al. [13] described a patient who developed a dry scaly
rash on his face and chest after 60 or 70 days of fat-free intrave-
nous therapy. Gas chromatographic assays showed that the pro-
portion of the triene 20:3n-9 in plasma HUFA had been more
than that for the tetraene 20:4n-6 for weeks before the rash was
evident. These proportions reversed and the rash disappeared
within days after administering an emulsion of soybean oil (43%
linoleic and 6.5% linolenic acid). After two weeks, the EFA infusion
was stopped, and the 20:3n-9 level gradually became greater than
that for 20:4n-6 for weeks before the skin rash recurred and the fat
infusion was resumed. Following continued EFA infusion, the rash
disappeared and remained absent.

This explicit longitudinal evidence of accumulated HUFA
proportions sharpens Holman’s earlier interpretation [7,8] that a
triene/tetraene ratio of 0.4 seemed to indicate a borderline EFA
deficiency. More precise gas chromatographic measurements
indicate that the borderline likely occurs after the proportions of
the n-9 acid is 50% or greater in blood HUFA for some weeks. Put
in other terms, the transition from EFA deficiency occurred when
the %n-6 in HUFA rose above 50% [13]. This biomarker for a transi-
tion from EFA deficiency is obtained with dietary linoleate intakes
between 0.1 and 0.5 en%. Section 9 of this review examines a
paradoxical aspect of this narrow range in more detail.

Cuthbertson [14] noted a paradox in the advice [6] that a
‘‘minimal linoleate requirement’’ for the human infant was ‘‘about
1 per cent of food calories’’. The absence of any clinical signs of
EFA deficiency in the U.K. contrasted with evidence that the major-
ity of baby foods in the U.K. provided only about 0.6 en%. If the
minimum EFA dietary requirement was, indeed, as high as 1.0
en%, deficiency signs should have been more common than they
were. Thus, he concluded that the ‘‘minimum EFA requirement’’
had been set too high, and that it was likely less than 0.5% of food
energy. The absence of severe signs of EFA deficiency in rats eating
linoleate at 0.56 en% [7] and more than 0.3 en% [12] again confirm
the very similar metabolic dynamics and very low level of dietary
need for this essential fatty acid in rats and humans suggested in
the 1946 report to the FNB [3].
5. Essential fatty acid actions and molecular medicine

Quantitative dose–response data reported in 1963 [6,9,12]
made it clear that humans (and rats) require dietary polyunsatu-
rated fatty acids (PUFA) which are metabolized to longer highly
unsaturated fatty acids (HUFA) that accumulate in tissues. To use
biomarkers of EFA status effectively for disease prevention, the
public needs valid measures of how these essential nutrients medi-
ate health maintenance and disease prevention. In 1963, the stage
was set to discover specific molecular events by which essential
fatty acids exert their impact on human health.

In the following year, 1964, Bergström and colleagues [15]
made a large step forward as they began describing the metabolic
conversion of tissue HUFA to hormone-like compounds called
prostaglandins. Over the next two decades, the list of newly dis-
covered EFA-derived bioactive molecules and their important
physiological and pathological processes grew rapidly and were
recognized by the 1982 Nobel Award in Physiology or Medicine.

Molecular mechanisms mediating the processes of inflamma-
tion, thrombosis and bronchoconstriction became recognized,
and researchers developed many new pharmaceutical agents to
decrease excessive formation and action of specific bioactive
agents formed from the major tissue n-6 HUFA, arachidonic acid.
Research showed that aspirin-like drugs had beneficial anti-
inflammatory, anti-thrombotic and analgesic actions by slowing
the formation of n-6 prostaglandins from arachidonate.

However, the newly recognized bioactive molecules did not
give ready answers for how essential fatty acids prevent physiolog-
ical signs of increased water consumption, development of scaly
skin and retarded growth. Also, the different effectiveness of n-3
and n-6 nutrients to prevent these signs during conditions of water
restriction [16] remained poorly understood. Insight on how such
phenomena connect to dietary EFA was delayed until the recent
brilliant work on skin lipids by Alan Brash and coworkers [17].
They hypothesize [18] that two epidermal lipoxygenases, 12R-
LOX and eLOX3 convert the linoleate ester in complex ceramides
into hepoxilins that act as a signal for further covalent binding of
the glycolipids to corneocyte proteins which forms a competent
skin barrier. The n-6 intermediates appear to be more effective
than n-3 forms for at least one of these steps.

Instead of explaining how n-3 and n-6 nutrients prevent classi-
cal signs of EFA deficiency, research from 1964 to 2004 provided a
stunningly expanded network of EFA-based physiological and path-
ophysiological mediators that act on selective receptors that occur
on nearly every cell and tissue in the human body. New research
showed increasingly sophisticated signaling networks by which
mediators derived from dietary PUFA and tissue HUFA regulate
cytokines and chemokines and affect human health. Paradoxically,
a principal goal for successful new drug development was to dimin-
ish excessive actions of the essential n-6 HUFA, arachidonate. The
situation suggests that the average dietary supply of n-6 essential
nutrients may be more than needed for good health.

Some of the new drugs (like the long-used aspirin) have a fairly
narrow therapeutic window between efficacy and harm, and they
require careful monitoring to avoid inhibition of beneficial n-6
mediated events. As more EFA-based mediators of chronic diseases
became known, billions of dollars went into developing and mar-
keting agents that successfully lowered unwanted excessive for-
mation and action of n-6 prostaglandins, leukotrienes and
thromboxane (while hopefully allowing needed n-6 mediator
actions to remain intact).

Knowledge grew rapidly about how tissue arachidonate mobi-
lized by phospholipase action is converted to specific bioactive
lipids that mediate major aspects of cardiovascular disease:
inflammatory plaques and thrombosis. The biomedical community
now knows a valid sequence of molecular events by which dietary
EFA cause tissue HUFA proportions that affect health maintenance
and disease prevention. The wide scope of unwanted disorders
known to be made worse by over-actions of n-6 mediators prompts
serious questions about an acceptable range of values for n-6 nutri-
ent intake and n-6 tissue status. What tolerable upper intake level
for n-6 nutrients is likely to have no risk of adverse health effects?

In this regard, the corresponding n-3 HUFA are less active in
forming prostaglandins [19], and they diminish arachidonate-med-
iated processes in animal models of stroke [20] and heart attack
[21]. This knowledge raised hope that a lowered intake of n-6
EFA precursors and increased intake of competing n-3 precursors
might moderate excessive unwanted actions of linoleate-based
mediators in humans. The idea stimulated a hypothesis 30 years
ago that deliberate dietary changes might provide primary preven-
tion of several serious diseases [22].
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5.1. An early clue to a narrow therapeutic window

An effort to decrease inflammatory disorders in rats by feeding
a very low level of dietary linoleic acid gave a HUFA status of 30%
n-6 in HUFA (with 70% n-9 in HUFA). This condition decreased
macrophage adherence to about half [23]. Interestingly, decreasing
the inflammatory process needed low proportions of n-6 HUFA
similar to those reported by Collins et al. [13] to cause signs of
EFA deficiency. This result suggests that in the absence of
counter-balancing n-3 nutrients, dietary n-6 linoleic acid may have
a very narrow (or non-existent) therapeutic window. As a result,
questions of ethics plus the difficulty of arranging such low dietary
intakes for humans (near the EAR of 0.1 en%) shifted interest
toward eating more n-3 nutrients to lower competitively the pro-
portion of n-6 HUFA while they raised the proportion of n-3 HUFA
in total tissue HUFA. This approach acquires more significance in
Section 9 of this review. A unique, detailed study of enzymes and
receptors showed many (but not all) n-3 analogs are active, but less
potent than the corresponding n-6 mediators in promoting recep-
tor-mediated processes [24]. It became apparent that changes in
the balance between moderate actions of n-3 mediators and
vigorous actions of n-6 mediators can provide a transition from
healthy physiology to pathophysiology. Replacing tissue n-6 HUFA
with n-3 HUFA can widen the therapeutic window for dietary n-6
linoleate.

The competitive hyperbolic relationship that tissue biomarkers
of EFA status have with dietary supplies of n-3 and n-6 EFA [9,12]
was confirmed quantitatively with rats [25] and extended to
humans [26]. The sensitive response of tissue HUFA status to PUFA
intakes below 0.5 en% contrasts with the relatively insensitive
response to dietary amounts above 2 en%. Such behavior is typical
for metabolism catalyzed by saturable active sites and character-
ized by the 100-year old empirical Michaelis–Menten relationship.

The empirical Michaelis–Menten constant, Km, is conceptually
analogous to an EAR for essential nutrients. Empirical constants
in a quantitative empirical equation fitting data for humans and
rats were near 0.05 en% for linoleic and linolenic acids [26]. Thus,
they confirm the value near 0.1 en% from earlier studies with rats
[7] and humans [4]. The equation [26,27] predicts the impact of
dietary n-3 and n-6 nutrients on tissue n-3 and n-6 HUFA. It pre-
dicts successfully the impact of dietary essential fatty acids on tis-
sue HUFA for data from 34 published studies of nearly 4000 people
in 92 groups from 11 different countries [28].
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Fig. 1. Relating tissue HUFA balance with blood cholesterol and heart attacks.
Results from the 25-year follow-up in the Seven Countries Study [35] were
discussed in an earlier review [10] which noted that ‘‘Food energy imbalances which
elevate blood cholesterol may be fatal only to the degree that omega-6 (n-6) exceeds
omega-3 (n-3) in tissue HUFA. Such evidence raises questions about the hypothesis that
blood cholesterol levels cause CHD.’’ Northern Europe and Southern Europe have
abbreviations ‘‘No.’’ and ‘‘So.’’, respectively. The Figure is reprinted with permission
of the publisher.
6. Insights from cross-cultural comparisons

Epidemiologists have long known that ischemic heart disease
was less prevalent for Mediterranean populations than for Ameri-
cans while being more prevalent than for Japanese [22,29]. These
cross-cultural differences are associated with different ethnic life-
styles and food choices that include food energy density and fat in
the diet. Higher heart disease incidence for Japanese living in the
USA [30] and rising rates following increased ‘‘Westernizing’’ of
traditional diets [31] indicate that different food choices and life-
styles were a more likely cause than genetics. Traditional popula-
tions seem to unknowingly maintain a form of food-based
primary prevention of cardiovascular disease, CVD. In describing
the strong association of CVD with higher dietary fat intake for
21 population groups [29], Keys urged extensive research on ‘‘the
role of dietary fat in atherogenesis and thrombogenesis’’. He noted
that the percent of dietary food energy as fat (i.e., food energy
density) was strongly associated with blood cholesterol levels
and CVD incidence. The stage was set to discover specific molecu-
lar events by which food energy exerts its negative impact on
human health.
Soon thereafter, the 1964 Nobel Award recognized intricate
molecular pathways by which food energy intake causes the liver
to form and secrete cholesterol and triacylglycerols in the form
of very low density lipoproteins (VLDL). This information made
cholesterol and triacylglycerol levels in blood credible biomarkers
for the intake of food energy density. However, to use these two
biomarkers as valid measures to monitor disease prevention, the
public needs valid measures of how food energy density might
act through these biomarkers to cause disease and death.

Keys hypothesized ‘‘the more common fats of the American
diet, when eaten in large amounts as is often the case in the United
States, may contribute to the production of relative hypercholes-
terolemia and so to atherogenesis’’ [29]. This cholesterol-centered
hypothesis contrasted with earlier evidence [32] of Alaskan
Eskimos eating much cholesterol and having high serum choles-
terol with an almost total absence of cardiovascular-renal diseases.
Wilber and Levine [32] regarded ‘‘the causative role of serum cho-
lesterol in development of atherosclerosis to be somewhat
dubious’’.

Although Keys disparaged [29] the evidence from Eskimos that
contradicted his idea, subsequent data on the EFA status of Arctic
people [33] eventually proved pivotal in alerting the public to
important differences between n-3 and n-6 EFA actions in mediating
cardiovascular disease. To better define preventable mediators that
link cardiovascular disease to food energy density and fat in the diet,
Keys recruited collaborators for the ‘‘Seven Countries Study’’, a large,
long-term cross-cultural study of cardiovascular disease associated
with different ethnic lifestyles and food choices [34].
6.1. Insight relating cholesterol and highly unsaturated fatty acid
(HUFA) balance

A 25-year prospective follow-up of the Seven Countries Study
[35] showed that absolute mortality rates for coronary heart dis-
ease (CHD) differed widely for a given level of the blood cholesterol
biomarker for high food energy density. The authors of the 1995
report [35] suggested dietary factors that affect inflammatory pro-
cesses and thrombosis were ‘‘of great importance’’. Those processes
have explicit mediators made from tissue n-6 HUFA. For six mixed
population groups in the study [35], biomarker levels for elevated
food energy density (blood cholesterol) were associated with risk
of death from CHD in the USA and Northern Europe. However, they
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had no clear association with CHD risk in Japan [35,36]. In fact, a
recent study of 173,539 Japanese men and women showed slightly
lower mortality with higher blood cholesterol levels [37]. Such evi-
dence (see Fig. 1) raises questions about the hypothesis that blood
cholesterol levels cause CHD.

In contrast to the cholesterol biomarker for food energy, tissue
biomarkers for n-3 and n-6 EFA status are strongly associated with
the severity of CHD in many diverse groups [38]. People with more
than 50% n-6 in tissue HUFA (and less than 50% n-3 in HUFA) have
a greater risk for CHD mortality than those with less than 50% n-6
in HUFA. Values for tissue HUFA status of different ethnic groups
world-wide range from 32% to 87% n-6 in HUFA ([34], see also
Table 2 in [10]). Estimates of the likely %n-6 in HUFA for the six
populations in the 25-year follow-up [35] gave an empirical model
that predicted the different observed slopes of absolute mortality
vs. serum cholesterol for all of the subject groups (see Fig. 1).
The balance between n-3 and n-6 in tissue HUFA seems a useful
value for health risk assessment (HRA).

Associations among death, blood cholesterol and the HRA value
of %n-6 in HUFA prompted the hypothesis that high food energy
intakes which increase the formation and secretion of cholesterol
and triacylglycerol may NOT lead to death when tissues have equal
proportions of n-3 and n-6 HUFA [10]. The food energy biomarker
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Fig. 2. Gas chromatographic assays describe EFA balance in foods and tissues. Two exa
individuals with different food habits. Eight HUFA shown on the right are combined into
acid contents were obtained from the USDA Nutrient Database [48], and mg/Cal values f
expressed as a single numerical value, the Omega 3–6 Balance Score [49], to describe th
(blood cholesterol) appears to predict CHD risk ONLY to the extent
that the proportions of pro-inflammatory and pro-thrombotic n-6
EFA (%n-6 in HUFA) exceeds those of the complementary anti-
inflammatory and anti-thrombotic n-3 EFA (%n-3 in HUFA). A sim-
ilar situation is evident in chronological associations of the likely
%n-6 in HUFA and the transition from benign to fatal prostatic
hyperplasia [39]. Much evidence suggests that some populations
unknowingly maintain a degree of primary prevention of chronic
cardiovascular and immune-inflammatory disorders by eating
foods that balance the n-3 and n-6 HUFA in their tissues
[10,22,38,40].

To design diets that develop a desired balance of tissue HUFA,
the empirical predictive equation [27] was placed within a simple
spreadsheet [41]. The spreadsheet estimates that eating BOTH n-6
linoleate and n-3 linolenate at 0.5 en% (which fits the definition of
their RDA and suppresses accumulation of n-7 and n-9 HUFA)
would likely maintain both n-3 and n-6 HUFA at a level near
50%. A similar outcome is predicted when BOTH acids are ingested
together at higher levels of 1, 2, 4 or 7 en%. However, continued
intake of linoleate near 6.8 en% with linolenate near 0.8 en% pre-
dicts a imbalanced value near 79% n-6 in HUFA. This proportion
is often observed in simple gas chromatographic analyses of whole
blood in Americans [10,38,40].
  # 1   # 2 Finger-tip Assay
weight percent gives fatty acids

1.5 1.4 in blood to give
0.4 1.0 the % n-6 in HUFA
0.7 2.2

20.5 22.1
2.1 3.3
7.7 6.1

16.8 15.4
27.2 23.5

0.7 0.3
0.6 0.6
0.3 0.1
0.1 0.1
0.1 0.0
0.3 0.1
0.1 0.0 eicosatrienoic
1.6 1.1 dihomo-γ-linolenic

12.9 9.1 arachidonic
0.8 4.7 eicosapentaenoic
0.3 0.5
0.4 0.4
1.3 0.5 docosatetraenoic
0.3 0.2 docosapentaenoic

docosapentaenoic1.6 2.0
1.6 4.7 docosahexaenoic
0.1 0.2

30.8 32.4
17.7 17.0
20.5 22.6

FA   21           51
FA   79           49

mples of data from finger-tip blood-spot assays illustrate different results seen for
one health risk assessment (HRA) value of %n-6 in HUFA. For each food item, fatty

or the eleven different n-3 and n-6 fatty acids noted on the left were combined and
e likely impact of each food item on the HRA value.
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7. Arithmetic for essential fatty acid (EFA) status in health and
disease

A 2008 critique of paradoxes in advice on dietary lipids [10]
described a connected causal chain of molecular events by which
an imbalance of n-3 and n-6 EFA in foods creates a propensity or
predilection for many chronic inflammatory and cardiovascular
disorders. The connected events indicate that the easily measured
proportion of n-3 or n-6 in HUFA [42] which monitors average
dietary intakes can also be a valid surrogate for eventual clinical
endpoints of saved lives or prevented disease. The transport and
exchange of HUFA among tissue lipids is relatively indiscriminate
with regard to the n-3 and n-6 structure, making relative propor-
tions of n-3 and n-6 acids in HUFA fairly similar for blood, plasma,
erythrocytes, or other tissues [25,42,43]. As a result, the percent of
n-6 in the HUFA of whole blood is a valuable health risk assess-
ment (HRA) measure for preventive medicine. Such surrogates
are important cost-saving tools when large, expensive, long-term
clinical trials need thousands of subjects for an otherwise long per-
iod of time to provide sufficient statistical power [44]. Measured
HRA values clearly inform people of their status so they can
voluntarily alter their food choices and HRA status.

To design menu plans that alter tissue HUFA balance for pri-
mary prevention of cardiovascular disease [45,46], a personalized,
interactive software program [47] used the predictive relationship
[27,41] with data from the USDA Nutrient Database [48] to develop
explicit food choices that arrange n-3 and n-6 EFA intakes to pro-
duce whatever tissue proportion of n-3 and n-6 HUFA is desired.

For example, daily menu plans with different intakes of n-3 and
n-6 EFA gave a likely tissue n-6 HUFA balance of 91%, 71%, 63%,
50%, 35%, 26% and 15% n-6 in HUFA (see Chapter 19, Ref. [45]).
Daily menu plans stored in the program files [47] can be retrieved
and modified to fit each individual’s personal taste preferences and
aversion to risk. To help people recognize more quickly the food
items likely to have a desired impact on tissue HUFA balance, the
mg/Cal values for eleven different n-3 and n-6 fatty acids in each
food item (Fig. 2) were combined and expressed as an Omega 3–
6 Balance Score [49]. In contrast to the 1992 empirical relationship
for dietary EFA forming tissue HUFA [26], the Balance Score uses
mathematical differences for four groups of 18-carbon n-3 and n-
6 nutrients and 20- and 22-carbon n-3 and n-6 nutrients. It also
includes a factor of 7 [49] to accommodate the more effective accu-
mulation of the dietary HUFA into tissue HUFA as it predicts
impacts related linearly to those predicted by the interactive soft-
Table 1
A simplified example of using Omega 3–6 Balance Scores to choose a daily menu plan.
Eating 100 calories of each item gives an overall average balance of +2.

Selected food items Omega 3–6 balance score

Cereals, ready-to-eat �2
Milk, non-fat, fluid 0
Orange juice, raw 0
Potatoes, Russet 0
Finfish, salmon +40
Broccoli, boiled +3
Collards, boiled +2
Cauliflower, boiled +5
Pinto beans, cooked 0
Spinach, boiled +1
Snap green beans +1
Chicken, light meat �5
Cheese, parmesan 0
Egg, whole, cooked �12
Tea, sweetened 0
Bananas, raw 0
Ice cream, vanilla �1
Average score of 19 items +2
ware [47]. Foods with a positive score will increase the proportion
of n-3 in tissue HUFA and those with a negative score will increase
the proportion of n-6 in tissue HUFA.

The calorie-weighted average score for the foods eaten in a day
relates directly to the proportions of n-3 and n-6 eventually accu-
mulated in the HRA biomarker of tissue HUFA proportions [49].
Typical American daily food choices have average scores around
�6 to �7, whereas average scores may be near �3 for Mediterra-
nean groups, near +1 for traditional Japanese, and near +3 for tra-
ditional Greenland Inuits [49]. The HRA biomarkers of tissue HUFA
status for these groups are near 78%, 63%, 40% and 28% of n-6 in
HUFA, respectively. Gas chromatographic analyses [10,42] allow
easy monitoring of the tissue HUFA proportions to compare with
observed health status.
7.1. Differences in ‘‘Western’’ and ‘‘Mediterranean’’ diets

The USDA formed a list of ‘‘Key Foods’’ [50] with 538 rank-ordered
foods consumed by Americans during 2007–2008. The Omega 3–6
Balance Scores [49] for the top 100 foods ranged from +5 to�50 with
an un-weighted average near�6, equivalent to a tissue HUFA status
near 78% n-6 in HUFA. The simple step of deleting ten food items
with the most negative Scores gave 90 remaining items with an
un-weighted average near �3. The removed items were: soybean
oil, �50; mayonnaise, �46; tub margarine, �39; microwave pop-
corn, �37; ‘‘Italian’’ salad dressing, �35; potato chips, �29; stick
margarine, �28; vegetable shortening, �28; peanut butter, �24;
tortilla chip snacks,�24. Deleting these foods not traditionally pres-
ent in Mediterranean meals changed the American ‘‘Key Foods’’ list to
one that fits closer to a ‘‘Mediterranean diet’’. Conversely, adding
these items to a Mediterranean diet would ‘‘Westernize’’ it in a way
that has been happening gradually in Mediterranean regions.

The �35 Score for the ‘‘Italian’’ salad dressing is much more
negative than the �10 for olive oil, suggesting that the dressing
used in the USA had oil with more n-6 linoleate than is traditional
for Mediterranean foods. Importantly, Mediterranean meals tradi-
tionally include some seafood items, whereas there were none in
the top 100 foods of Americans. The 151 seafoods obtained from
the USDA Nutrient Database had an average score of +30 [49]. Add-
ing some seafood items to the 90 remaining food items would give
a more positive average value. Explicit information on the 3–6 bal-
ance of each food item gives an easy way for people to practice per-
sonal primary prevention. The information can be downloaded to
personal portable devices to serve as an ‘‘app’’ [51] and guide per-
sonal food choices when shopping, preparing meals or discussing
foods with friends.

A simplified example in Table 1 illustrates the use of Omega 3–6
Balance Scores: 19 food items combined in a daily menu plan with
100 Cal of each food have an overall Score of +2, which is predicted
to maintain a tissue HUFA balance near 35% n-6 (or 65% n-3) in
HUFA. This predicted HRA value resembles that for Greenland Inu-
its [49] and is associated with a low incidence of cardiovascular
disease.
8. Arithmetic for food energy density in health and disease

The 2008 critique of paradoxes in advice on dietary lipids [10]
reviewed misunderstandings developed from epidemiological
associations and fragmentary evidence about the molecular events
by which food energy density has a fatal impact on human health.
Biomarkers associated with an imbalance in the intake and expen-
diture of food energy are: food energy density, dietary fat, dietary
saturated fat, plasma triacylglycerols, obesity (body mass index),
plasma LDL, plasma cholesterol, insulin resistance and type 2 dia-
betes. All of these factors predict to some degree a higher risk for
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CVD events even though they may not cause the clinical endpoints
of cardiovascular events and death [40].

Fig. 3 helps identify biomarkers that have a causal mediating
role in CVD. Only causal mediators are valid surrogates for clinical
events during prevention interventions [10]. While treatment
medicine may be funded to reduce any unwanted sign or symptom
(risk factor), preventive medicine must put a high priority on
reducing causal mediators if it is to prevent the need for treatment.
Reducing a non-mediating predictive risk factor may still leave the
initial cause unchanged to continue creating harm and thereby not
reduce the incidence of the disease that must then be treated.

The 2008 critique of advice on dietary lipids described how
general understanding of causal fatal mechanisms for saturated
fats and cholesterol was incomplete [10]. It described the role of
n-6-eicosanoids in atherogenesis and confirmed a detailed 1992
review [52] about weaknesses in the cholesterol-oriented ‘‘lipid
hypothesis’’. Limited logic by advisory groups continues to promote
evidence-based misunderstanding of cholesterol actions and leads
to interventions which are not cost-effective. More rigorous logic is
needed to identify and prevent the mediators by which food
energy impairs the important clinical outcomes of saved lives
and prevented disease.

A steady, inexorable accumulation of vascular damage after
adolescence was confirmed by extensive detailed histology in the
PDAY study (reviewed in Fig. 14, Ref. [10]). The area of abdominal
aortal damage was near 20% at 18 years, 32% at 28 years and 40% at
32 years. The results show that continual (but infrequent) initia-
tion of vascular damage proceeds for decades unrecognized until
the accumulated damage eventually causes a severe clinical event.

Vascular injury begins selectively where hydrodynamics cause
eddy currents with extended residence times [53]. These eddies
allow accumulated oxidants and inflammatory mediators to
amplify a transient vascular dysfunction into a chronic vascular
pathology. Once formed, an inflammatory site makes and releases
more chemotactic and inflammatory mediators and progresses to
even more severe pathology. One potent force in this progression
(especially in people with HRA values above 50% n-6 in HUFA) is
the much greater chemotactic and inflammatory action of n-6
LTB4 compared to that for n-3 LTB5 [54].
A likely candidate for a very early step in atherogenesis is the
repeated postprandial reversible loss of endothelial function
[55,56] which could occasionally convert into a chronic inflamma-
tory locus. Endothelium-dependent dilation is lower with higher
postprandial triacylglycerolemia (a marker for high food energy
density). An often-neglected postprandial process when excess
food energy forms the much-discussed circulating blood biomarker
low-density lipoprotein (LDL) is the hydrolytic release of large
amounts of non-esterified fatty acid (NEFA) into the plasma [10].
The biological impact of the much-neglected NEFA and its resultant
oxidant stress (indicated in Fig. 3B) may be greater than the effect
of the co-produced LDL (with its adherent cholesterol). However,
daily messages about LDL cholesterol from marketing and research
groups greatly exceed information on the simultaneously released
NEFA, and they divert attention away from harmful NEFA actions.

8.1. Actions of non-esterified fatty acids (NEFA) amplified by n-6
mediators

Meal-induced vascular dysfunction and oxidative inflammatory
conditions (measured by hydrogen peroxide and isoprostane
levels) as well as released monocyte chemoattractant protein-1
were less when diets included fish oil n-3 HUFA [57]. Lipemia-
induced loss of endothelial function involves impaired nitric oxide
actions, and it can be alleviated in part by supplements of arginine
[58]. However, arginine did not prevent an accompanying
pro-thrombotic expression of P-selectin and vonWillebrand factor
on platelets. Impaired endothelial function monitored as flow-med-
iated dilation after an oral fat challenge was related to the extent of
hypertriacylglycerolemia and oxygen-derived free radicals [59].
Postprandial lipemia was accompanied by increased plasma hydro-
peroxides and a neutrophil chemotactic agent, IL-8 [60].

Importantly, leukocyte chemotaxis and adhesion are much
greater when the mediator is n-6 LTB4 rather than n-3 LTB5 [54].
A significant increase in adhesion of monocytes to the endothelial
monolayer occurred in the presence 20:4n-6, and it was decreased
with 20:5n-3 [61]. Pro-inflammatory mediators (intercellular
adhesion molecule 1, vascular cell adhesion molecule 1, E-Selectin,
IL-6, and TNFa) were all significantly increased in endothelial cells
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incubated with 20:4n-6. Thus, the n-3 and n-6 HUFA proportions in
tissues shown in Fig. 3A must be considered when interpreting the
impact of food energy density upon risk for CVD shown in Fig. 3B.

Important arithmetic in managing food energy is in balancing
intake with expenditure during the course of a day. The on-going
societal shift toward a sedentary lifestyle puts a premium on
awareness of energy intake and expenditure. During 3 h of typical
modern lifestyle activities, a 150 lb person may expend approxi-
mately: 225 Cal riding in a car; 202 Cal using computer/internet;
216 Cal watching television; 202 Cal reading book/newspaper;
202 Cal sleeping. Physical activity like walking for 1 h may expend
about 270 Cal, and one hour of bicycling, about 500 Cal.

In contrast to low energy expenditure, an average restaurant
meal may have 1327 Cal [62], which is 1100 in excess of that likely
to be burned in the next 3 h. As a result, much remains for the liver
to convert to plasma VLDL and begin the transient process of post-
prandial endothelial dysfunction. An important, simple tactic to
distribute food energy intake more evenly is to eat fewer calories
per meal and use small snacks to lower the burden of food energy
per hour upon the liver.

With three meals per day and 365 days per year, people may
have a thousand postprandial situations per year. If only one per
hundred (1%) of these transient postprandial insults converted to
a chronic inflammatory site, there might be 10 new sites each year
leading to 200 sites in 20 year-old individuals, 400 in 40-year olds
and 600 in 60-year olds. Such a low frequency for initiation fits the
slow age-dependent histological evidence in the PDAY Study (see
Fig. 14 in [10]). While food energy can give reversible pathologies,
a more serious process may be the n-6 mediated amplification of
transient dysfunction into chronic inflammatory plaques.

The propensity for recruiting macrophages that convert a vas-
cular area into a chronic inflammatory site is much greater when
the tissue HUFA balance has a high %n-6 in HUFA. In this way,
the higher risk of mortality associated with higher levels of the
food energy biomarker, cholesterol (Fig. 1), is seen in populations
that have a higher HRA value for the %n-6 in HUFA. A high preva-
lence of CVD for Americans has remained for decades near 40% for
40-year olds, 60% for 60-year olds and 80% for 80-year olds [63]
indicating a failure to prevent the continual disease progression
that the PDAY Study showed to begin youth.

Fig. 3A shows how n-3 and n-6 mediators act in CVD, and Fig. 3B
shows how food energy intake leads to a high body mass index
(BMI) or obesity, which is a predictive associated risk factor for
CVD. While factors that cause obesity may also cause CVD, a high
BMI per se is not a certain cause of vascular damage, CVD or death.
A very large expensive effort to lower CVD by lowering BMI with
intensive lifestyle intervention of 5145 overweight or obese
patients in 16 study centers [64] gave weight loss through
decreased caloric intake and increased physical activity. However,
the trial was stopped after millions of dollars and 9.6 years of
follow-up showed no lowering of observed risk of cardiovascular
morbidity or mortality compared with controls. While many
people believe that obesity (high BMI) causes death, the fatal
mechanisms and mediators will need to be better identified and
prevented if we are to design cost-effective interventions that
prevent harm from food energy.
9. Review of advice on dietary lipids

During the past fifty years, the American public has experienced
vigorous promotion of the ‘‘cholesterol hypothesis’’ that blood cho-
lesterol was a mediating cause of cardiovascular disease. Wide-
spread advice was designed to increase intakes of linoleate and
decrease intakes of dietary saturated fats and cholesterol while
many drugs were marketed intensively to slow the conversion of
food energy to cholesterol. Advice from the FNB noted that ‘‘A Tol-
erable Upper Intake Level is not set for cholesterol because any incre-
mental increase in cholesterol intake increases CHD risk’’ (Ref. [1], p.
542 and 573). This comment indicates a belief in a very narrow to
non-existent therapeutic window for dietary cholesterol.

The report also claimed: ‘‘The main adverse effect of dietary cho-
lesterol is increased serum LDL cholesterol concentration, which would
be predicted to result in increased risk for CHD.’’ (Ref. [1], p. 568) The
stated rationale for this advice used associative rather than causal
terminology: ‘‘There is much evidence to indicate a positive linear
trend between cholesterol intake and low density lipoprotein
cholesterol concentration, and therefore increased risk of coronary
heart disease’’ (Ref. [1], p.542 and 573).

In contrast to this interpretation, Fernandez [65] summarized
epidemiological studies from the past 20 years that ‘‘show no evi-
dence of a link between dietary cholesterol and heart disease, coronary
heart deaths or plasma cholesterol concentrations.’’ and concluded
that ‘‘recommendations limiting dietary cholesterol should be
reconsidered.’’ This view follows from data collected from 37,851
men and 80,082 women which gave no evidence of a significant
association between egg consumption and risk of CHD or stroke
in either men or women [66].

Despite repeated affirmations that associations are not proof of
cause [29], epidemiological studies often monitor surrogate bio-
markers that are predictive ‘‘risk factors’’ without evidence that
the factor actually causes the harmful clinical event. Nevertheless,
predictive associated risk factors are often used to ‘‘explain’’ differ-
ences in death rates [34] and allocate the ‘‘risk due to’’ such factors
in ways that mislead the public with evidence-based misunder-
standings regarding associated and causal factors. The hypothesis
of cholesterol-mediated deaths was dominant for decades
although extensive associative correlations were not matched with
proved causal mechanisms [10,52]. When a large clinical trial,
ENHANCE, lowered blood cholesterol without lowering coronary
heart disease (CHD) clinical events [67], public questions rose as
to whether cholesterol is a valid surrogate marker for preventing
CHD [68,69].

The JUPITER trial [70] showed that statin treatment lowered
elevated levels of an acute stress protein that is released during
inflammatory conditions while it was also lowering plasma choles-
terol levels. The results re-opened long-standing questions of
whether cholesterol [29] or inflammation [71] is a more important
preventable mediator of CVD morbidity and mortality. Fig. 3B
notes that isoprenoid molecules other than cholesterol (e.g., preny-
lated proteins) may mediate inflammatory-proliferative events.
However, the transient news report of a single scientific study is
easily forgotten as a stream of redundant marketing messages
diverts attention. Historic aspects and misunderstandings sur-
rounding the 1984 Cholesterol Consensus Conference in facilitating
statin marketing have already been reviewed in detail [10].
9.1. Shifting attention toward inflammation

Thirty years after the 1984 Cholesterol Consensus Conference
(with statin patents expiring), new marketing messages have
begun to turn attention away from lowering blood cholesterol
levels toward lowering actions of inflammatory mediators. Choles-
terol is not an inflammatory mediator, and long-standing
evidence-based misunderstandings about its actions in health need
correction [10,52]. The basic logic for one predictive risk factor is:
(1) where there’s smoke, there’s fire; (2) waving away smoke will
not put out a fire. Now is a good time to re-examine the logic in the
advice of the Consensus Development Panel that declared blood
cholesterol to be a mediating cause of CVD rather than merely an
associated predictive factor [72].
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The Sydney Diet Heart Study recently gave a comprehensive
description of the effects of dietary linoleic acid on CHD and CVD
mortality [73]. The long-neglected evidence shows that substitut-
ing n-6 linoleate in place of saturated fatty acids decreased blood
cholesterol levels as predicted from many metabolic studies. How-
ever, that substitution also led to a CVD and CHD mortality above
the already high rate for the control group (evidence little noted
publicly until now). An updated meta-analysis of the intervention
trials that increased dietary linoleic acid to lower the blood choles-
terol showed no evidence of cardiovascular benefit [73]. Rather,
the findings re-open questions about FNB advice [1] to eat more
n-6 linoleate to lower the blood cholesterol levels that still remain
a popular associative predictor of CVD events. Lowering this asso-
ciative predictive risk factor does not lower the causal factor of
excessive n-6 mediator actions, and it has not been very cost-effec-
tive in preventing CVD.

The evident risk from tissue HUFA imbalances with HRA values
above 50%n-6 in HUFA [10,38,45] opens the question of setting a
Tolerable Upper Intake Level (UL) for linoleic acid intake. However,
the FNB claimed ‘‘There is insufficient evidence to set a UL for n-6
polyunsaturated fatty acids’’ (Ref. [1], p. 423). To the contrary, the
FNB set for linoleic acid an Adequate Intake (AI) level (which nearly
all individuals should be eating) ‘‘based on the median intake in the
United States where an n-6 fatty acid deficiency is nonexistent in
healthy individuals’’(Ref. [1], p. 423). Advice that leads those in
the USA population eating less than the median to eat more has
an uncertain logic that needs clarification. Nutrition experts might
regard it an ethical obligation to inform vegans, vegetarians and
people refusing to eat seafoods (that have high positive Omega
3–6 Balance Scores) about the evidence for a very small (or non-
existent) therapeutic window for n-6 nutrients in the absence of
n-3 nutrients.

The currently recommended AI level for n-6 linoleate is far
above the known level of 0.5 en% at which EFA deficiency is pre-
vented. It was set by the FNB with the stated belief that ‘‘the AI
can provide the beneficial health effects associated with the consump-
tion of linoleic acid’’. The unspecified evidence for such associations
needs very careful review and interpretation. If the putative benefit
is in lowered blood cholesterol levels, then advice to eat more lino-
leate than needed to prevent EFA signs seems poorly justified.

One in three American deaths is due to cardiovascular disease
that has not been prevented [74], and over 70% of Americans over
60 years have cardiovascular disease [63]. With known harmful
actions of n-6 mediators in CVD, the current USA median intake
of n-6 linoleate near 7 en% merits much more critical evaluation.
Open evaluation and clarification of the FNB advice and its under-
lying logic could give constructive rephrasing in the context of the
historic evidence for an EAR below 0.1 en% and an RDA near 0.5
en% for n-6 linoleate intakes.

Advising the public about an intake of n-6 nutrients at which
harm may be detected can be addressed by using evidence of tissue
HUFA proportions and their consequences. However, the tradi-
tional approach to setting a UL value is confounded by the inescap-
able context of interactions between n-3 and n-6 acids competing
for accumulation in tissue phospholipid HUFA. No single dietary
EFA controls the balance in tissue HUFA proportions that are an
important HRA measure. Rather, the proportions are maintained
by predictable competitive metabolic interactions among dietary
18-, 20- and 22-carbon n-3 and n-6 EFA [27,28,41,49]. Without
competing n-3 nutrients in the diet, even 0.5 en% linoleate (an
RDA-like level) will give a tissue HUFA balance with more than
50% n-6 in HUFA – a value associated with more harmful long-term
health outcomes than with values below 50% [10,38,45].

A tolerable level for n-6 nutrient intake needs to be seen in the
context of desired long-term outcomes. It will depend on the aver-
age daily supply of beneficially competing n-3 nutrients that lower
the proportion of n-6 in HUFA and widen the therapeutic window
for dietary linoleate. The multiplicity of successful combinations of
n-3 and n-6 nutrient intakes that can maintain a desired HRA value
should not be a reason to limit discussion of a desirable upper limit
in the %n-6 in HUFA. Precise longitudinal evidence from Collins
et al. [13] indicated that a rescue from inadequate to adequate
EFA status occurred in going from 30% n-6 in HUFA to 50% n-6 in
HUFA (when the other main tissue HUFA was 20:3n-9). Paradoxi-
cally, cross-national evidence suggests that long-term harm may
occur when going from a balance of 30% to 50% n-6 in HUFA (when
the other main HUFA are 20:5n-3 and 22:6n-3). In fact, the multi-
ethnic evidence for progressively less harm with progressively
lower HRA values of %n-6 in HUFA has no clear ‘‘optimum’’ [38].

9.2. Recognizing unbalanced n-6 nutrient supplies

The biomedical community can constructively consider that
essential n-6 nutrients may have a much narrower therapeutic
window than is generally recognized. The absence of a commit-
tee-assigned tolerable upper limit is not evidence for the absence
of a tolerable upper limit. Ironically, FNB advice implying a non-
existent therapeutic window for dietary cholesterol might logically
be withdrawn and replaced by advice about a very small to non-
existent therapeutic window for dietary linoleic acid in the
absence of counterbalancing n-3 nutrients. Lowering the dietary
supply of n-6 nutrients ensures that counter-balancing n-3 HUFA
can accumulate in tissues from which they form (often at slower
rates) less aggressive mediators. One simple result of accumulating
higher proportions of n-3 in tissue HUFA is that it lowers the pro-
portion of n-6 in HUFA available for release by phospholipase A2,
and it slows the formation and action of potent n-6 bioactive lipids
(as many pharmaceuticals are designed to do). Future research will
apportion further the health benefits that may come from lessened
actions of n-6 mediators compared to increased actions of n-3 bio-
active lipids (such as resolvins, protectins, maresins and epoxides).
Both types of benefit favor lowering dietary intakes of n-6 nutri-
ents while raising intake of n-3 nutrients.

A study of worldwide diversity in disease burdens and intakes
of EFA led to estimates of how much added dietary n-3 HUFA could
give different groups a target HRA status of 50% n-6 in HUFA [75].
Because of very different intakes of n-6 linoleate, that HRA goal
might require added intakes of 1 en% n-3 HUFA for the USA, 0.5
en% for Italy, 0.26 en% for Denmark and only 0.06 en% for the Phil-
ippines. The report [75] estimated that a healthy dietary allowance
for n-3 HUFA with current US diets could be 3.5 g/d for a 2000-kcal
diet, and it ‘‘can likely be reduced to one-tenth of that amount by con-
suming fewer n-6 fats’’.

Measuring only n-3 status or n-6 status alone fails to keep the
important context of balance between n-3 and n-6 nutrients and
tissue HUFA balance that underlies health maintenance and dis-
ease prevention. In this regard, rather than elevating intakes of
n-3 HUFA to 3.5 g/d to achieve an HRA status of 50%, the average
American diet could be adjusted by lowering n-6 linoleate intake
from its current level near 16.5 g/d (6.8 en%) to a level near
2.5 g/d (1en%). The diet-tissue estimator [41] shows that if intake
of n-3 linolenate remained at 0.7 en%, lowering n-6 linoleate intake
to 1 en% for Americans could meet an HRA goal near 50% n-6 in
HUFA. If linolenate intake continued to be only 10% of the linoleate
intake, then an additional 0.06 en% n-3 HUFA could meet the HRA
goal of 50%.

As noted earlier [49] with the Omega 3–6 Balance Scores and
the American Key Foods list, reducing the linoleate content of the
diet is easily achieved by replacing soybean oil (with an omega
3–6 balance score of �50) with an oil of low linoleate content
and by eating other food with less negative Omega 3–6 Balance
Scores. Olive oil (score of �10) has a lower content of n-6 linoleate
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than most vegetable oils, but it has very little counterbalancing n-3
linolenate. Alternatively, canola oil (score, �11) has twice the con-
tent of linoleate as olive oil with some counterbalancing n-3 linol-
enate. Finally, flaxseed oil (score of +48) has n-6 linoleate content
similar to canola counterbalanced by 3-fold more n-3 linolenate.

Various cultivars and genetically modified plant oils that can
help people lower the %n-6 in HUFA are now approaching public
markets. At present, one readily available low-linoleate food-oil
is from the high-oleic acid cultivar of sunflower (score of �4;
which contrasts with �74 for standard sunflower oil). Recently,
food combinations [76] that comply with the official Australian
Guide to Healthy Eating were made with a n-6 linoleate daily
intake near 1.8 en% by using macadamia oil (score, 0) and butter
(score, �3). Also, a highly successful nutritional intervention to
reduce severe headaches [77] used diets made with study-pro-
vided low-linoleate oils such as coconut oil (score, �2), macadamia
nut oil (score, 0), butter (score �3), fat-free mayonnaise and mac-
adamia-vinaigrette salad dressing [78].

Lowering intakes of linoleate to less than 2.5 en% allowed an
increased intake of omega-3 nutrients for three months to replace
tissue n-6 HUFA with n-3 HUFA and lower the HRA status from 77
to 61%n-6 in HUFA while achieving an intended lowering of clinical
signs and symptoms [70]. Fortunately, the less vigorous actions of
n-3 nutrients have no known UL [79], and their competitive actions
widen the narrow therapeutic window for n-6 nutrients. Overall
evidence supports advising an estimated average requirement
(EAR) for n-6 linoleate near 0.1 en%, a recommended dietary allow-
ance (RDA) near 0.5 en% and a tolerable upper intake level (UL)
near 2 en%. Similar values for an EAR and RDA are appropriate
for n-3 linolenate. Such advice can help more people eat foods that
may lower the prevalence of many chronic immune-inflammatory-
thrombotic disorders.
10. Follow the money

The 2008 critique of paradoxes in advice on dietary lipids
described how ‘‘silo mentality’’ [10] among diverse special interest
groups gave the public fragmented facts that led to serious evi-
dence-based misunderstandings. However, the review failed to
give an adequate analysis of the financial incentives that could per-
mit progress in primary prevention. The review made it clear that
business plans for food processing and marketing have financial
imperatives very different from preventive medicine. Evidence
for a narrow therapeutic window for dietary linoleic acid (without
counterbalancing n-3 nutrients) may not be a welcome addition to
messages for marketing most vegetable oils and nuts, even though
it might fit marketing messages from developers of new low-lino-
leate food oils.

In a similar way, the prevention of a need to treat may not be a
welcome idea for the many people gainfully employed in treat-
ment-oriented activities: doctors, nurses, actuaries, researchers,
health care professionals and wellness counselors working with
hospitals, pharmaceutical companies and insurers. The American
health care system of payments offers little financial incentive to
professionals who prevent the need for their services. Successful
prevention will require explicit identification of preventable causal
mediators to allow decisive action by people who will gain finan-
cially from removing the cause of the need for treatments. When
we identify those who can gain financially from preventing a need
for treatments, we likely will learn which people are motivated to
support and implement cost-effective prevention.

Twenty years ago, well-informed medical experts noted that ‘‘If
there were no illness and no accidents, health care costs for a soci-
ety would theoretically be zero’’ and ‘‘Preventable illness makes up
approximately 70 percent of the burden of illness and the associ-
ated costs’’ [80]. An alternate pessimistic review of workplace well-
ness programs [81] confirmed that not all efforts at prevention
save money [80]. Other health specialists have scoffed at the idea
that food-oriented interventions might give any appreciable bene-
fit [82]. This attitude is supported by awareness of the imprecise
tools of traditional diet assessment and extensive evidence of poor
compliance with nutritional interventions. However, these weak-
nesses are likely less when using a HRA biomarker that quantita-
tively monitors EFA intakes and also has a mediating role in
clinical processes we want to prevent. This was most recently seen
for positive benefits in the randomized controlled trial of pain
reduction in which patients ate foods that lowered the average
HRA value from 77 to 61%n-6 in HUFA in three months [77].

Fig. 3 gives a context to see how reducing associated predictive
risk factors without removing the primary cause can be expected
to be less cost-effective than reducing risk factors that have clear
causal connections. The recent disappointing lack of CVD preven-
tion from hopeful reductions in obesity [64] is mirrored in an
equally disappointing financial analysis of weight-loss’ inability
to lower health expenditures [83]. Parallel disappointments
occurred when lowering elevated levels of the associated biomark-
ers, cholesterol and glucose, noted in Fig. 3B (and reviewed in Ref.
[40]). Until now, the health care plans developed by treatment-ori-
ented health professionals have not implemented cost-effective
prevention interventions even though those professionals remain
gainfully employed from their treatment-centered actions.

10.1. Who has health-related financial losses?

With health-related absenteeism and presenteeism causing
much more financial loss than their associated medical and phar-
macy claims, self-insured corporations have many financial rea-
sons to prevent the many health-related problems associated
with high proportions of n-6 in HUFA and excessive n-6 mediator
actions. Such problems, made worse by uninformed food choices,
include heart attacks, atherosclerosis, thrombosis, arrhythmia,
stroke, immune-inflammatory disorders, asthma, arthritis, cancer
proliferation, obesity, psychiatric disorders, depression, suicide,
homicide, oppositional behavior, unproductive workplace behav-
iors and length of stay in hospitals. A financial loss for health-
related absenteeism and presenteeism plus medical and pharmacy
costs would not occur for healthy employees.

Being aware of this, most large employers already invest in cor-
porate wellness plans to help employees build healthy lifestyles.
Successful plans will give an objective measure of return on invest-
ment. People do not need a physician’s prescription to eat less n-6
nutrients, more n-3 nutrients and fewer calories per meal. Each
corporate wellness plan that offers employees explicit information
on omega 3–6 balance scores of foods plus results from their per-
sonal HRA monitoring can generate its own informative summary
of anonymous individual associations of HRA values of %n-6 in
HUFA linked to annual health care claim costs. Fragmentary results
suggest that employees who maintain lower HRA values may have
lower average annual health claim costs [84].

With a clear focus on preventing financial losses due to an unin-
tended high HRA status, two tools give a new opportunity for cor-
porations to inform their employees of ways to shift attention
away from non-causal biomarkers toward effective prevention
[84,85]. The %n-6 in HUFA measured by gas chromatographic anal-
ysis of HUFA in an individual’s finger-tip blood-spot readily
informs people of their HRA status [42]. Knowing one’s HRA value
and its consequences can motivate voluntary use of Omega 3–6
Balance Scores [49,51] to choose foods with less negative and more
positive Scores.

Voluntary informed choices of foods that shift tissue HUFA bal-
ance and lower the average HRA status of employees from 77% n-6
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in HUFA to 57% n-6 in HUFA might prevent more than $400 million
financial losses annually for a self-insured corporation with
100,000 employees and a typical health-care plan [84]. In the
USA overall, there may be a trillion dollars of preventable annual
financial loss that self-insured corporations could recover and redi-
rect to other priorities. The evidence examined in this review sug-
gests that employees and employers in the USA have much to gain
together from monitoring and preventing imbalances among n-3
and n-6 hormone precursors.

We know of tools ready to monitor [42] and moderate [49,51]
imbalances in n-3 and n-6 nutrients that cause hundreds of billions
in corporate financial losses in the USA. The FNB quoted Goethe
when advising the public about DRI values [1]: ‘‘Knowing is not
enough; we must apply. Willing is not enough; we must do.’’
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