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Abstract
Gastric acidity is likely a key factor shaping the diversity and composition of microbial com-

munities found in the vertebrate gut. We conducted a systematic review to test the hypothe-

sis that a key role of the vertebrate stomach is to maintain the gut microbial community by

filtering out novel microbial taxa before they pass into the intestines. We propose that spe-

cies feeding either on carrion or on organisms that are close phylogenetic relatives should

require the most restrictive filter (measured as high stomach acidity) as protection from for-

eign microbes. Conversely, species feeding on a lower trophic level or on food that is dis-

tantly related to them (e.g. herbivores) should require the least restrictive filter, as the risk of

pathogen exposure is lower. Comparisons of stomach acidity across trophic groups in

mammal and bird taxa show that scavengers and carnivores have significantly higher stom-

ach acidities compared to herbivores or carnivores feeding on phylogenetically distant prey

such as insects or fish. In addition, we find when stomach acidity varies within species either

naturally (with age) or in treatments such as bariatric surgery, the effects on gut bacterial

pathogens and communities are in line with our hypothesis that the stomach acts as an eco-

logical filter. Together these results highlight the importance of including measurements of

gastric pH when investigating gut microbial dynamics within and across species.

Introduction
Often, vertebrate stomach evolution is discussed in the context of the stomach’s role in chemi-
cally breaking down food and, specifically, denaturing proteins via pepsinogen and HCl [1].
The stomach clearly serves these purposes. However in light of our growing understanding of
microbial symbionts’ role in human health, it is interesting to reassess the stomach’s additional
role as an important barrier against pathogen entry into the gastrointestinal tract [2–3]. Here
we consider the ecology of bird and mammal stomachs and, in the same light, medical
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interventions that alter human gastric pH and their implications for the human-microbe
relationship.

Early studies of the human gut microbiome suggested that gut colonization was stochastic
and transitory [4] and the microbiome at any particular moment was strongly influenced by
recent colonists [5]. This pattern, if general, would have suggested a modest role for the human
stomach in modulating the composition of the intestines. However, recent research in gastric
health suggests that the pH environment of simple-stomached vertebrates serves a more prom-
inent function as an ecological filter, capable, through its acidity, of killing microbial taxa that
would otherwise colonize the intestines [2]. In this context, successful colonization would be
infrequent. Recent studies show that in the absence of severe perturbation, the temporal vari-
ability in microbial composition of the human gut is less than the variability between individu-
als [6–8]. When major changes occur in healthy individuals, they often appear due to changes
in the relative abundance of taxa rather than the arrival of new lineages [9]. More and more,
data seem to suggest that species-specific communities in the human gut appear relatively
resistant to perturbation [10–11], in large part because the acidic human stomach prevents fre-
quent colonization of the gut by large numbers of food-borne microbes, regardless of whether
they are beneficial or pathogenic.

While the literature on the human stomach, its acidity and the gut microbiome, seems to
support the idea that stomach acidity evolved as a barrier to pathogen colonization, such an
assertion makes full sense only in light of a broader comparative understanding of stomach
acidity in birds and mammals [12–13]. Yet, while the idea that the stomach serves as a barrier
to pathogens has often been discussed [14–16], no study appears to have formally compared
the stomach pH in birds or mammals as a function of their biology in general or their likely
exposure to foodborne pathogens in particular.

Because maintaining an acidic pH environment is costly, acidic stomachs should be present
primarily in those cases where it is adaptive (or where it was adaptive in a recent ancestor). The
cost of stomach acidity is twofold. The host must invest significant energy for both acid pro-
duction and protecting the stomach from acid-related damage [17]. In addition, the acidity of
the stomach may preclude, or at least make more difficult, chance acquisition of beneficial
microbes. At the opposite extreme are those specialized herbivores in which stomach morphol-
ogy is derived to include an alkaline chamber (forestomach or pre-saccus) that house microbes
critical for fermenting a plant diet [18–22]. In these animals, an acidic stomach is not only of
limited value (because the risk of foodborne pathogens in plant material is low), it may also
remove those microbes that aid in the breakdown of plant material. Broadly then, we expect
stomach acidity to mirror animal diets in ways that reflect pathogen risk. We expect that ani-
mals feeding on carrion will have the most restrictive filter, i.e. higher stomach acidity. Carrion
has the potential to sustain high pathogen loads because the dead host’s body has stopped sup-
pressing bacterial growth. Similarly, carnivores and omnivores would be expected to have
higher stomach acidities than herbivores with specialized fermenting forestomachs because
pathogens found in prey are more likely to be capable of infecting the predator than plant-asso-
ciated microbes [23]. However, we would also expect the acidity of the carnivore and omnivore
stomach to also depend on the phylogenetic distance between predator and prey. Pathogens
are far more likely to be able to infect related hosts [23], such that a bird consuming an insect
should face a lower risk of a foodborne infection than a bird consuming a bird. To test these
hypotheses, we compare the stomach acidity of mammals and birds across a diversity of diet
types.

In light of the results, we then revisit the ecology of the human stomach, its role as a filter
and the likely consequences of this role within the context of modern human lifestyles and
medical interventions. If stomach acidity acts as a strong filter, we expect that when acidity
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levels are reduced, the influence of diet-associated microbes on the intestinal microbiota will be
greater. It is known that stomach acidity decreases with age and as a consequence of some med-
ical treatments [24–26]. Thus, as acidity decreases and the filter’s effectiveness is reduced, we
would expect to see increases in both the diversity of microbial lineages and pathogen loads in
the gut. We also expect that animals, such as humans, with very acidic filters should be particu-
larly predisposed to negative consequences of the loss of gut symbionts because the odds of
chance re-colonization are low.

Materials and Methods

Vertebrate stomach
Here we focus on two taxonomic groups, mammals and birds, in which the ecology of stom-
achs has been best studied. Within these taxa, we focus on the first chamber of the gastrointes-
tinal tract, a chamber with different names depending on the organisms and context. In
mammals, gastric acid production and temporary food storage both occur in the stomach. In
birds, acid production occurs in the proventriculus and food storage occurs in the gizzard
(Fig 1). We focus on the stomachs of mammals and, technically, the proventriculus of birds,
but hereafter use the term “stomach” for simplicity. Stomachs vary greatly in their structural
complexity and size among vertebrates [27], particularly mammals, yet in most of these cases,
stomachs are the most acidic component of the digestive tract [28]. The exception to this pat-
tern are forestomach-fermenting species in which microbial fermentation precedes digestion
and absorption [22]. Mammalian herbivore clades can be characterized on the basis of where
in the gastrointestinal tract most alloenzymatic (microbial) fermentation of dietary carbohy-
drate occurs. In foregut fermenters, microbes reside in one to several sections of a sacculated
stomach. Among primates, only one lineage (subfamily Colobinae) has evolved this system,
but analogous digestive strategies are found in several lineages of Artiodactyla as well as sloths,
and kangaroos [18–22]. Among birds, only one species is known to rely on such a fermentation
system (hoatzin, Opisthocomus hoazin) although microbes are housed in a specialized two-
chambered crop, and not, technically, in the stomach [29]. Regardless of morphology, because
communities of cellulolytic microorganisms and healthy fermentation occur most productively
in an alkaline environment, the proximal portion of the foregut-fermenting stomach has a pH
of approximately 5.5 to 7, while the distal portions have a pH of about 3. The need to maintain
a particular pH in the forestomach no doubt influences feeding decisions: when the production
of volatile fatty acids from fermentation exceeds absorption, the overabundance of acids can
cause a drop in forestomach pH, resulting in a sometimes fatal affliction known as acidosis.

Literature search
We searched gastrointestinal biology, animal physiology and avian physiology textbooks for
measured stomach pHs. We also searchedWeb of Science, PubMed, Google Scholar and
unpublished literature (i.e. dissertations, conference abstracts) for relevant data. Given its pri-
mary role in digestion, stomach pH has been measured in far fewer taxa than might be
expected. For instance, to the best of our knowledge, no data on stomach pH exist for any hom-
inoid other than humans, and surprisingly few data exist for primates more generally. Simi-
larly, while it is wildly held that hyenas have “very acidic” stomachs, consultation of experts in
hyenas and their diets were aware of no data that actually directly considered this assertion.

For those taxa for which data were available, we categorized animals by taxonomic group
(bird or mammal), species and trophic group. For consistency, we assigned trophic group
based on the animals’ natural feeding behavior (Table 1). A species was classified as an obligate
scavenger if it fed primarily on carrion. Conversely, we defined facultative scavengers as species
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that are known to feed on carrion but not as a primary food source. We classified carnivores as
a generalist if it fed indiscriminately on prey items or a specialist if the diet consisted primarily
of a specific prey item (i.e. insects, fish). A species was categorized as an omnivore if it fed on

Fig 1. Comparison of stomach pH (mean ± S.E.) across trophic groups with gastrointestinal tracts of representative birds andmammals. Different
letters above error bars represent statistically significant differences (P < 0.05) using ANOVA and Tukey-Kramer post-hoc test. Obligate scavengers
(1.3 ± 0.08), facultative scavengers (1.8 ± 0.27), generalist carnivore (2.2 ± 0.44), omnivore (2.9 ± 0.33), specialist carnivore (3.6 ± 0.51), hindgut herbivore
(4.1 ± 0.38) and foregut herbivore (6.1 ± 0.31).

doi:10.1371/journal.pone.0134116.g001
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Table 1. Stomach pH data included in empirical analysis. Taxonomic class, order, species’ common and scientific names, trophic groups, stomach pH
and reference(s). Fermentation strategy and specialized diets are indicated within trophic group category.

Class Order Common name Scientific name Trophic group pH Reference

Mammalia Perissodactyla shetland ponies Equus caballus var herbivore/hindgut 5.9 [48]

Mammalia Monotremata echidna Tachyglossus aculeatus specialist carnivore/Insect 6.8 [49]

Mammalia Primates colobus monkey Colobus polykomos herbivore/foregut 6.3 [50]

Mammalia Artiodactyla brocket deer Mazama sp. herbivore/foregut 5.5 [51]

Mammalia Primates cynomolgus monkey Macaca fascicularis omnivore 2.1 [52]

Mammalia Perissodactyla rhino Diceros bicornis herbivore/hindgut 3.3 [53]

Mammalia Proboscidea elephant Loxodonta africana herbivore/hindgut 3.3 [53]

Mammalia Artiodactyla hippo Hippopotamus amphibius herbivore/hindgut 4.4 [53–54]

Mammalia Edentata sloth Choloepus sp. herbivore/foregut 7.4 [54]

Mammalia Artiodactyla collared peccary Tayassu pecari herbivore/foregut 5.8 [54]

Mammalia Primates skyes monkey Cercopithecus mitis omnivore 3.4 [55]

Mammalia Primates baboon Papio cynocephalus omnivore 3.7 [55]

Mammalia Primates langur monkey Presbytis cristatus herbivore/foregut 5.9 [56]

Mammalia Marsupialia macropodid Macropodidade herbivore/foregut 6.9 [57]

Aves Galliformes chicken Gallus gallus domesticus specialist carnivore/Insect 3.7 [58–59]

Mammalia Primates humans Homo sapiens omnivore 1.5 [60–61]

Aves Falconiformes grey falcon Falco rusticolus facultative scavenger 1.8 [62]

Aves Falconiformes peregrine falcon Falco peregrinus facultative scavenger 1.8 [62]

Aves Falconiformes red tailed hawk Buteo jamaicensis facultative scavenger 1.8 [62]

Aves Falconiformes swainson's hawk Buteo swainsoni facultative scavenger 1.6 [62]

Aves Strigiformes snowy owl Nyctea scandiaca generalist carnivore 2.5 [62]

Aves Falconiformes bald eagle Haliaetus leucocephalus facultative scavenger 1.3 [62]

Aves Strigiformes great horned owl Bubo virginianus generalist carnivore 3.1 [62]

Mammalia Carnivora ferret Mustela putorius furo generalist carnivore 1.5 [63]

Aves Procellariiformes wandering albatross Diomedea exulans obligate scavenger 1.5 [64]

Aves Sphenisciformes gentoo penguin Pygoscelis papua specialist carnivore/Fish 2.5 [64]

Aves Sphenisciformes magellanic penguin Spheniscus magellanicus specialist carnivore/Fish 2.3 [64]

Aves Accipitriformes white backed vulture Gyps africanus obligate scavenger 1.2 [65]

Mammalia Marsupialia southern hairy nosed wombat Lasiorhinus latifrons herbivore/hindgut 3.3 [66]

Mammalia Marsupialia woylie brush tailed bettong Bettongia penicillata herbivore/hindgut 2.8 [67]

Mammalia Rodentia beaver Castor canadensis herbivore/hindgut 1.7 [68]

Mammalia Primates howler monkey Alouatta palliata herbivore/hindgut 4.5 [69]

Mammalia Cetacea bottlenose dolphins Tursiops truncatus specialist carnivore/Fish 2.3 [70]

Mammalia Marsupialia quokka Setonix brachyurus (Quoy & Gaimard) herbivore/hindgut 7.4 [71]

Mammalia Cetacea minke whale Balaenoptera acutorostrata specialist carnivore/Fish 5.3 [72]

Mammalia Primates silver leafed monkey Tracypithecus cistatus herbivore/foregut 5.9 [73]

Aves Pelecaniformes american bittern Botaurus lentiginosus facultative scavenger 1.7 [74]

Mammalia Marsupialia possum Trichosurus vulpecula facultative scavenger 1.5 [75]

Mammalia Artiodactyla ox Bos sp. herbivore/foregut 4.2 [76]

Mammalia Artiodactyla sheep Ovis aries herbivore/foregut 4.7 [76]

Mammalia Perissodactyla horse Equus ferus caballus herbivore/hindgut 4.4 [76]

Mammalia Rodentia gerbil Gerbillinae sp. herbivore/hindgut 4.7 [76]

Mammalia Rodentia guinea pig Cavia porcellus herbivore/hindgut 4.3 [76]

Mammalia Rodentia hamster Cricetinae sp. herbivore/hindgut 4.9 [76]

Mammalia Lagomorpha rabbit Oryctolagus cuniculus herbivore/hindgut 1.9 [76]

Mammalia Primates crab-eating macaque Macaca irus omnivore 3.6 [76]

(Continued)
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both plants and animals. Within herbivores, we separated foregut fermenters from hindgut fer-
menters to account for the specialized fermentation strategy involving sacculated stomachs.

We calculated a mean pH for the entire stomach if values were presented for multiple loca-
tions such as the fundus, body and pyloric regions. If studies provided both baseline and post-
feeding values, we used the baseline pH. When not fasting, pH may vary depending on factors
including diet and time since feeding.

We used a general linear model approach followed by a Tukey-Kramer post-hoc test to
assess differences in stomach pH as a function of trophic category using PROC GLM in SAS
9.3 (SAS Institute, Cary, NC, USA).

Results
In total, our literature search yielded data on 68 species (25 birds and 43 mammals) from seven
trophic groups (Table 1). A general linear model based on diet explained much of the variation
in the stomach pH (R2 = 0.63, F1,6 = 17.63, p< 0.01). The trophic groups that were most vari-
able in terms of their stomach pH were omnivores and carnivores that specialize in eating
insects or fish.

Our hypothesis was that foregut-fermenting herbivores and animals that feed on prey more
phylogenetically–distant from them would have the least acidic stomachs. Tukey-Kramer com-
parisons indicated that scavengers (both obligate and facultative) had significantly higher
stomach acidities compared to herbivores (both foregut and hindgut) and specialist carnivores
feeding on phylogenetically distant prey. Specifically, foregut-fermenting herbivores had the

Table 1. (Continued)

Class Order Common name Scientific name Trophic group pH Reference

Mammalia Rodentia mouse Mus musculus omnivore 3.8 [76]

Mammalia Rodentia rat Rattus norvegicus omnivore 4.4 [76]

Mammalia Artiodactyla domesticated pig Sus scrofa domesticus omnivore 2.6 [76–77]

Mammalia Carnivora dog Canis lupus familiaris (beagle) facultative scavenger 4.5 [78–81]

Mammalia Carnivora cat Felis catus generalist carnivore 3.6 [78; 82]

Mammalia Chiroptera common pipistrelle bat Pipistrellus pipistrellus specialist carnivore/Insect 5.1 [83–84]

Aves Sphenisciformes king penguins Aptenodytes patagonicus specialist carnivore/Fish 2.9 [85]

Mammalia Artiodactyla guanaco Lama guanicoe herbivore/foregut 7.3 [86]

Mammalia Artiodactyla llama Lama glama herbivore/foregut 7 [86]

Mammalia Rodentia porcupine Erethizon dorsatum herbivore/hindgut 4.5 [87]

Mammalia Artiodactyla camel Camelus sp. herbivore/foregut 6.4 [88]

Aves Strigiformes barn owl Tyto alba facultative scavenger 1.3 [89–90]

Aves Strigiformes little owl Athene noctua facultative scavenger 1.3 [90]

Aves Charadriformes black-headed gull Larus ridibundus facultative scavenger 1.5 [90]

Aves Falconiformes common kestrel Falco tinnunculus generalist carnivore 1.5 [90]

Aves Charadriformes common pied oystercatcher Haematopus ostralegus generalist carnivore 1.2 [90]

Aves Accipitriformes common buzzard Buteo buteo obligate scavenger 1.1 [90]

Aves Passeriformes carrion crow Corvus corone obligate scavenger 1.3 [90]

Aves Gruiformes common moorhen Gallinula chloropus omnivore 1.4 [90]

Aves Passeriformes common starling Sturnus vulgaris specialist carnivore/Insect 2 [90]

Aves Anseriformes mallard duck Anas platyrhynchos omnivore 2.2 [58; 62; 90]

Aves Suliformes great cormorant Phalacrocorax carbo carbo specialist carnivore/Fish 3 [90–91]

doi:10.1371/journal.pone.0134116.t001
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least acidic stomachs of all trophic groups while omnivores and generalist carnivores, with
more intermediate pH levels, were not distinguishable from any other group (Fig 1).

Discussion
Based on the available data, our analysis illustrates a general pattern in which species feeding
on carrion and animals have significantly higher stomach acidities compared to species feeding
on insects, leaves, or fruit. On their own, the patterns are in line with the hypothesis that one
role of the stomach is to inhibit microbial entry into the gut, though these patterns might also
be explained by other phenomena. Carnivores need more acidic stomachs in order to lyse the
protein in their meat-based diets. For example, secretion of pepsinogen and its activation to
pepsis in the stomach is modulated by an acid pH (2–4) [30]. Also, activity of proteases in a
simple acid stomach depends on an acidic environment (pH 2–4) [31]. However, while this
might explain differences between predators and herbivores, it does not account for the very
high acidity in the stomachs of scavengers, especially considering that the meat consumed by
scavengers is not likely to be much harder to digest than that of predators. We suggest that
these scavengers rely on the high acidity of their stomach to prevent colonization of their guts
by foodborne pathogens [32]. Omnivores and piscivores were most variable in stomach acidi-
ties, which is to be expected as both diets differ greatly from species to species. Insectivores
may use diverse means to digest insect chitin, with acidity playing a role in some but not other
cases.

The special case of herbivory
Carrion feeding imposes one sort of constrain on the ecology of the gut, an increase in
the potential for pathogens. Herbivory imposes another, the need to digest plant material
refractory to enzymatic digestion (cellulose and lignin). In order to digest these compounds,
herbivores rely disproportionately on microbial processes [33]. Different regions of the gastro-
intestinal tract (either rumen, caecum or in the case of the hoatzin a folded crop) function pri-
marily as fermentation chambers. Thus, a challenge with fermentative guts is favoring those
microbes that are useful for digestion while reducing the risk of pathogen entry into the gut.
We suggest that because the threat of microbial pathogens is relatively low on live leaves
(although see [34]), herbivores can afford to maintain a chamber that is modestly acidic and
therefore less restrictive to microbial entry. However, we find several interesting exceptions to
this generality. Beavers, which are known to store food caches underwater where there is a high
risk of exposure to a protozoan parasite Giardia lamblia, have very acidic stomachs. The high
stomach acidity may have evolved to manage this prevalent environmental pathogen [35]. The
other herbivore in our dataset with a very acidic stomach is the rabbit, which provides an inter-
esting example of a behavioral modification of the stomach environment. Rabbits are known to
engage in frequent coprophagy which allows them re-inoculate themselves with microbes [36].
The specialized soft pellets that house microbes also reduce the stomach acidity creating an
environment suitable for fermentation [37].

Human evolution and stomach pH
It is interesting to note that humans, uniquely among the primates so far considered, appear to
have stomach pH values more akin to those of carrion feeders than to those of most carnivores
and omnivores. In the absence of good data on the pH of other hominoids, it is difficult to pre-
dict when such an acidic environment evolved. Baboons (Papio spp) have been argued to
exhibit the most human–like of feeding and foraging strategies in terms of eclectic omnivory,
but their stomachs–while considered generally acidic (pH = 3.7)–do not exhibit the extremely
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low pH seen in modern humans (pH = 1.5) [38]. One explanation for such acidity may be that
carrion feeding was more important in humans (and more generally hominin) evolution than
currently considered to be the case (although see [39]). Alternatively, in light of the number of
fecal-oral pathogens that infect and kill humans, selection may have favored high stomach
acidity, independent of diet, because of its role in pathogen prevention.

The special risk to juvenile and elderly humans
If, in carnivores and carrion-feeders, the stomach’s role is to act as an ecological filter then we
would also expect to see higher microbial diversity and pathogen loads in cases where stomach
pH is higher. We see evidence of this in age-related changes in the stomach. Baseline stomach
lumen pH in humans is approximately 1.5 (Table 1). However, premature infants have less
acidic stomachs (pH> 4) and are susceptibility to enteric infections [40]. Similarly, the elderly
show relatively low stomach acidity ([41], pH 6.6 in 80% of study participants) and are prone
to bacterial infections in the stomach and gut [42]. It is important to note that these differences
may be related to differences in the strength of the immune system however we argue here that
the stomach needs more consideration when studying these patterns.

Consequences for medical interventions that influence stomach pH
In addition to natural variation, stomach pH is also affected by some medical interventions,
several of which are increasingly common. In gastric bypass weight loss surgery, roughly 60
percent of the stomach is removed. A consequence of this procedure is an increase in gastric
pH levels that range from 5.7 to 6.8. We would predict that the intestines of those individuals
who have had gastric bypass surgery should be more likely to experience microbial overgrowth,
a pattern that is supported by recent work [25]. We see similar patterns in other clinical cases
such as oesophagitis in which treatment involves the use of proton-pump inhibitors and celiac
disease where delayed gastric emptying is associated with reduced acidity [43–45]. More gener-
ally, we predict that individuals undergoing interventions that reduce the acidity of their stom-
achs will be at long term increased risk of gastrointestinal pathogens. However, this risk may
be reduced if such individuals tend to avoid foods in which pathogen risk is elevated, which
include (as for birds and mammals more generally) foods that resemble carrion (raw fish, raw
mammal meat, etc. . .), and perhaps even meat in general. Thus, one might expect the optimum
pH for humans to change depending on changes in eating habits.

The human stomach and the loss of mutualistic microbes
In general, stomach acidity will tend to filter microbes without adaptations to an acidic envi-
ronment. Such adaptations include resistant cell walls, spore-forming capabilities or other
traits that confer tolerance to high acidities and rapid changes in pH conditions. We’ve consid-
ered the role of the stomach as a pathogen barrier within the context of human evolution.
Another potential consequence of high stomach acidity, when considered in light of other pri-
mates and mammals, is the difficulty of recolonization by beneficial microbes. A large body of
literature now suggests that a variety of human medical problems relate to the loss of mutualis-
tic gut microbes, whether because those mutualists failed to colonize during hyper-clean C-sec-
tion births [46] or were lost through use of antibiotics [47], or other circumstances. The pH of
the human stomach may make humans uniquely prone to such problems. In turn, we might
expect that, among domesticated animals, that similar problems should be most common in
those animals that, like us, have very acidic stomachs.
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Conclusion
We demonstrate that stomach acidity increases with the risk of food-borne pathogen exposure
and propose that the stomach plays a significant role as an ecological filter and thus a strong
selection factor in gut microbial community structure and primate evolution in particular. In
light of modern lifestyle changes in diet, hygiene and medical interventions that alter stomach
pH, we suggest that stomach acidity in humans is a double-edged sword. On one hand, the
high acidity of the human stomach prevents pathogen exposure but it also decreases the likeli-
hood of recolonization by beneficial microbes if and when they go missing. However, in those
cases where acidity is reduced, the gut is more likely to be colonized by pathogens. Though it is
widely discussed in both the medical and ecological literature, data on pH are actually very
scarce. Thus, to fully understand the patterns highlighted here more detailed studies on the gut
microbiota across stomach acidities and diet are required.
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